Design and Development Of A Generative Agent
That Models Human Conversational Behavior

Ibrahim El Kaddouri
Katholieke Universiteit Leuven
Leuven, Belgium
ibrahim.elkaddouri @student.kuleuven.be

Abstract—This paper outlines the design and development of
a generative agent that can hold a conversation with players in
the ETAP game. ETAP is a serious first-person, single-player
dialogue game set in a fictitious 3D environment aimed to teach
players how to recognize emotions.

The generative agent assesses the level of trustworthiness and
the emotion it should experience while conversing with the player.
The following emotions comprise the emotional state the agent
can experience: happy, angry, disgust, fear, surprised, sad or
neutral.

The first goal would be to make sure the agent converses
in a way that closely resembles real-world communication. It
should avoid making pointless remarks or asking questions and
neglecting user’s statements in the process.

The second goal of this paper is for the generative agent to
provide the player with the right degree of trust and emotion
based on the ongoing conversation. These trust and emotion
values are used to visualise the facial expression of the agent
when conversing with the player. As such, if the player is talking
about the death of a family member, the agent shouldn’t have
an overly happy facial expression.

In this paper, it has been observed that when a user acts
disrespectfully toward the agent, the agent shows the right kind
of facial expression back. The generative agent nevertheless keeps
displaying artifacts that suggest the dialogue was generated by a
large language model. Regretfully, no exact measurements were
made to ascertain the agent’s effectiveness. The project codfﬂ is
open source and a small part of the gameﬂ can be played online.

LI1ST OF FIGURES

1 Example Quest Scenario |
Example Conversation With Camuila |.

enerative ent Architecturel
enerative Agent atting Architecture{

DN W W N

Uhttps://github.com/ChristianPoglitsch/EmpathicAgents
Zhttps://etap.gamelabgraz.at/

CONTENTS
I Introduction| 2
-A Game Overview| 2
[I-B System Design|. 3
[IT___Related Workl 3
(II' " Generative Agents| 3
[11-A Memory | 3
MI-B— Reflection] 4
[(II-C Planning |. 4
I\ C ronal Archi 4
IV-A Prompting For Conversation | 4
1V-B elf-determinism of Agents | 5
V. Discussion| 6

V-A Prompting For Conversation| 7
V-B self-determinism of agents| 7

(VI Conclusion| 7
VIT" Future Workl 7
[References] 8
V Append 9
11I-A DP Pr 0. 9
(VIII-B__ Persona Characteristics | 10

https://github.com/ChristianPoglitsch/EmpathicAgents
https://etap.gamelabgraz.at/

I. INTRODUCTION

The World Health Organization (WHO) estimates that one
in every 100 children globally receives an ASD diagnosis [14].
Individuals with autism spectrum disorder (ASD) frequently
have co-occurrence of psychiatric disorders [11], such as
depression, anxiety, attention deficit hyperactivity disorder
(ADHD), psychotic symptoms, and emotional instability syn-
dromes [3].

Autism spectrum disorder (ASD) can negatively affect
individuals’ ability to communicate. ASD patients find
everyday conversations challenging because of problems
in recognizing social signals and interpreting emotions
[13]. The treatment for the so-called ’social blindness’ is
usually intensive individual therapy sessions or group therapy
sessions. However, this type of therapy is expensive and
therefore often occurs only rarely [[13].

The Early diagnosis and personalized Therapy in Autism
spectrum to Prevent severe disorders (ETAP) project aims to
prevent severe disorder by significantly increasing access to
emotional recognition training for those with ASD and at
low(er) cost [[13]]. To this end, Poglitsch et al. proposes the
development of a game that focuses on social interaction and
discusses the requirements for building such a game [10] [9].

The game is intended to virtualize emotional recognition
therapy. It would consist of a player (the ASD patient) and a
non-playable character (NPC) who would interact with each
other via a chatting system with verbal communication. The
agent would be able to recognize the emotional state of
the player by the frequency at which the individual makes
reactions and measuring the stress level of the individual (via
skin impedance, heart rate) [|13]].

An important aspect here is that one should strive for
hyper-realistic and responsive avatars in order to show detailed
emotions to the individual. Moreover, the agent should show
as little to no artifacts of being a Large Language Model
(LLM) when conversing. To evaluate whether the agent
displays empathy properties, there are certain metrics that
could be used, such as the Bot Usability Scale, System
Usability Scale, Social Responsiveness Scale [9].

In short, one can use large language models to achieve this
goal together with a realistic visualization of the agent to lead
to the creation of a conversation partner. The use case is to
provide an opportunity to practice and establish social skills
for people with ASD.

The long-term goal for this game is to be as as effective
as a real 1-on-1 therapy session. It is supposed to be used 15
minutes a day, 5 days a week, for at least a month. To the
authors’ knowledge, there is no such virtual, interactive health
care system on the market. This is an innovative solution to
the problem posed above.

Hi, would you like to join us for
lunch? We're planning to go to the
cafeteria.

No thanks, I'm heading

What do they have on the
menu?

1'd really like to, but | need That's a bit sudden. When
some quiet time at lunch. are you planning to leave?

Fig. 1. Part of a dialogue quest with colleague Camila to be completed by
the player. This is not a conversation with the agent, but a dialogue quest.

A. Game Overview

ETAP is a single-player first-person dialogue game set in
a fictional world, which can be compared to a very limited
version of the following games: Firewatch, Life is Strange,
The Stanley Parable, A Plague Tale: Innocence or Heavy Rain.

In ETAP, the player can navigate an office scene while
completing quests. When the player encounters a colleague,
the player can begin a conversation with the NPC. Each NPC
has a distinct personality, plan and memory which allows for
a more personal interaction with the player. During a conver-
sation, the agent can express different emotions. If an NPC
is angry at a player, it may try to finish the conversation and
show an angry face. Each character has different parameters
for expressing emotions, some show their emotions clearly,
while others are more restrained.

The player will also be presented with quests during the
game which can include dialogue quests, see Figure [I] The
player must complete the dialogue in order to continue the
gameplay. When presented with options during a dialogue, the
player can make different choices on how the conversation
should continue. Each choice affects two values: ’Energy’
and ’Social Acceptance’. Choosing an antisocial option or
responding in a way that harms the relationship between the
NPC and the player will lower the ’social acceptance’ score.
The ’Energy’ score goes down each time the player interact
with anybody. The goal is to avoid dropping these values too
low in order to finish the quest. Additionally, each choice
affects the NPC’s emotional state which is represented by six
core emotions. These emotions are happy, angry, disgust, fear,
surprised, sad or neutral and are part of Plutchik’s wheel of
emotions [8].

Additionally, the game includes mini-games such as Ekman,
Emoty Crush, Jump and Memory. One notable mini-game,
’Ekman’ is inspired by Paul Ekman and Wallace V. Friesen’s
work [2]). In this mini-game, the player has a limited amount
of time to recognize the correct facial expression shown on
screen. The player is also required to show specific emotions
on their face when prompted within a given time limit.

Fig. 2.
colleague Camila.

A scene during development where the player is conversing with

B. System Design

The system compromises of the following components:
o The AI Subsystem:

— When the player is talking to an NPC, the NPC
should act and respond in a way similar to human
interaction, see Figure

— The AI subsystem is responsible for generating re-
sponses for the agents and inferring emotions.

o The Dialogue Subsystem:
— Responsible for handling the dialogues in the game.
o The Mini-games Subsystem:

— Mini-games serve as filler for the game.

— They also serve as a training ground to improve the
player recognition of emotions.

o The Quest Subsystem:

— The game consists of quests that the user must
complete.

— Quests include activities such as picking something
up, looking for something, calling somebody, and
finishing dialogues with NPCs.

o The Statusbar Subsystem

II. RELATED WORK

Virtual reality games have been used in the past for assisted
learning in order to study the effects and potential of improv-
ing emotional experiences of autistic people (6.

This project will be heavily based on the paper by Joon
Sung Park et al., in which an agent architecture was proposed
that relies on a LLM with memory to query past experiences
[7]. It is also enhanced by giving the LLM agent a personality
and the ability to plan events. This paper will explain this
architecture in more detail and how it will eventually end up
in the game system.

III. GENERATIVE AGENTS

The large language model is extended with a database to
store the agent’s past experiences. It retrieves some memories
from the database and makes new observations based on those
memories. Eventually, it retrieves the relevant memories in
order to decide how to plan its day, see Figure [3] [[7]].

The architecture consists of three big parts. The first part
is the ‘memory stream‘. This is the database that stores past
conversations with players or agents. It also stores events that
the agent perceives in its surroundings and events that are
reflections of earlier events that were present in the database.
In order to retrieve the correct memories out of the database,
the architecture optimises for three separate variables: ‘rele-
vance‘, ‘recency‘ and ‘importance‘. The second part is called
‘reflection‘ where multiple past events are retrieved from the
memory stream in order to generate new insights from it. The
third part is ‘planning‘ or the ability to plan the day of the
agent based on past memories but also on personal information
of the agent which is stored in ‘scratch‘ memory [[7].

3
o
5
A

Y

(Memory Stream]—)

A A

Retrieve

Y

Reflect

Perceive Action

Fig. 3. The Generative Agent Architecture [7].

A. Memory

The need for a memory stems from the fact that a large
language model has a finite context window size and not all
past experiences are relevant for a certain prompt. At its core,
the memory stream is a big JSON file composed of a list of
concept objects or nodes. Each node stores a certain number
of parameters, such as ‘description and ‘poignancy".

There are three types of events or types of nodes that can
be stored in the database. It can be an observation , in which
case the event is assigned an ’event’ value. If it came from
a conversation with the player, it is assigned ’chat’ and lastly
if it came from a reflection, it is assigned ’thought’. These
are the three types of nodes which can be added to the the
database [7].

"node_<int>": {
"node_count":
"type_count":
"type": <"event"|
"depth": int,
"created": string,
"expiration": null |
"subject":

<"{world}:{sector}:{arena}:{object}"
"predicate": string
"object": string
"description": string
"embedding_key": string,
"poignancy": 1,
"keywords": list<string>,
"filling": list<string>

}

<int>,
<int>,

"chat" | "thought">,

string,

The following is an example of how such an object can be
filled with some arbitrary data. In the example below, some
agent observed that the bed in the main room is in use.

"node_9": {
"node_count": 9,
"type_count": 6,
"type": "event",
"depth": O,
"created": "2024-08-13 11:11:20",
"expiration": null,
"subject":

"Graz:apartment :main_room:bed",
"predicate": "be",
"object": "used",
"description": "bed is being used",
"embedding_key": "bed is being used",
"poignancy": 1,
"keywords": ["used", "bed"],
"filling": []

In order to retrieve the correct memory objects, the follow-
ing three parameters should be taken into account: recency,
relevance and importance. Recency is an exponential decay
function over time since the memory was last retrieved.
Importance weighs how import a single memory object is.
This is calculated by querying the LLM and inferring how
important that event was. This is also the poignancy score
that can be seen in the memory object above. The higher the
score, the more important the event is. Relevance is measured
by comparing the description of the memory object with some
query key. If they are semantically close or equivalent, the
relevance score would be high. This type of inference is called
‘semantic search‘ and is done by comparing the embedded

vectors of both the query and the description key inside the
memory object.

B. Reflection

In order to reflect on past events, the large language model
is prompted to give 3 questions that would provide the most
information about particular subjects. The prompt is accom-
panied by 100 data entries from the database, which would
provide contextual background for the inquiry. Do remember
that each memory object has a subject field which is used in
this particular prompt. Once these 3 questions are generated,
they would be used as queries for retrieving relevant memory
object out of the database. Finally, the language model is
prompted once more to extract new insights from the retrieved
data.

C. Planning

Planning corresponds to filling in a day’s worth of activities.
A single planning entry includes information such as location,
start time and duration. When planning, it is important to know
what the agent does for work, what hobbies they practise,
who they have met and where they work. This type of data
will be important for creating schedules that make sense.
A schedule that makes sense, is one that doesn’t conflict
with previous days. It is not possible to work as a full-time
professor one day and study to become a doctor the next.
In this architecture, the planning is made in several steps. In
the first step, the large language model is queried with agent
specific information, which is stored in ’scratch’ memory. This
information includes the name, age, personality characteristics
and more, see Appendix In this prompt, the previous day
schedule is also included and the task is for the large language
model to infer a new day schedule. The new plan is saved in
the database and later decomposed into hour long segments
and finally into 15 minutes chunks.

IV. CONVERSATIONAL ARCHITECTURE
A. Prompting For Conversation

The message entered by the player is formatted in JSON in
the form of PromptMessage and is sent to the python
endpoint, see Figure[d] For further information about the JSON
format, see Appendix After receiving this message, the
Python endpoint generates the agents’ response by adding
specific memories about the player that the agent recalls. The
server method in turn returns four important variables. The
utterance (response), the emotion, the trust level and the end
boolean variable. The emotion value is one of the six emotions
described by Plutchik’s wheel of emotions. The trust level is
a numeric value from 0 to 10 where a lower number equates
a lower trustiness between the player and the NPC.

Those four values are sent back to the Unity endpoint
formatted in a JSON of type PromptResponse . The
Unity scene displays the utterance back on the screen where
it would be visible for the player. Based on the end variable
received, the conversation may be ended on part of the agent.

Retrieve

A

message response

Fig. 4. The generative agent architecture when chatting with a player. The
blue lines represent the python space whilst the green lines represent the unity
space.

The trust and emotion variables are used in order to make the
character express the right kind of facial expression.

utt , emotion, trust_level , end =
server .prompt_processor (
player_name ,
persona_name ,
player_message ,
LLM_model
)
response_data = PromptResponseData(

utt=utt ,

emotion=emotion ,
trust_level=trust_level ,
end=end

response_message = PromptReponse (
type=ResponseType . PROMPT_RESPONSE,
status=StatusType .SUCCESS,
data=response_data ,

)

sending_str =

response_message . model_dump_json ()

socket.send_data(sending_str)

B. Self-determinism of Agents

The agents can also take actions in the environment without
initiation from the player. These agents regularly perceive their
surroundings at set intervals. The environment that’s being
perceived has a certain spatial hierarchy, similar to how objects
in real life have a spatial hierarchy. To make the comparison,
in order to specify an address, you start with the country,
followed by the city, the street and finally the house number.
Even within a house, you can specify the location of a certain
object by identifying the room in which the object lies.

The environment can be decomposed into sectors, arenas
and then individual objects. For example, an object like a
’Bible’ can be found in a ’church’ which is located in
the city called ’Graz’, which is part of the planet ’Earth’.
In this case, the object ‘Bible‘ will have an identifier as

"Earth:Graz:church:Bible" . Each object in the
environment has this kind of spatial information attached to
it. When combined with other objects, these identifiers can be
used to construct a tree data structure.

"Kortrijk": {
"Saint Martin’s Park": {

"cafe": [
"refrigerator",
"cafe customer seating",

]I

"public restroom" : [
"shower",
"bathroom sink",
"toilet"

This asset is constructed during the development of the
game and is therefore static. Naturally, not every single
object in the environment needs to be included in this tree
data structure. Only objects that agents can interact with are
included. Agents perceive their surroundings within a certain
radius and, for example, may only perceive the subtree ’cafe’
in the example above. Assume that the character observes a
‘Bible‘ and it observes a person called Camila using a knife
to cut an arm of. All this information is collected at the Unity
side and send in the format MoveMessage to the python

endpoint, see Appendix [VIII

EventData (
action_event_subject=
"Graz:Church:room:Bible",

action_event_predicate=None,
action_event_object=None,

action_event_description=None,

) 4

EventData (
action_event_subject="Camila",
action_event_predicate="is using",
action_event_object="knife",
action_event_description=

"using knife to cut an arm of",

)y

The python endpoint processes these events, adds them to
its memory stream, and retrieves other similar events from
memory. The tree structure that’s present in the subject of one
of these events can then be converted into natural language for
generative agents. For instance, *Bible’ being a child of "room’
is converted into ’there is a Bible in the room’. Based on these
retrieved events, the agent may change its plans. if the event
involves a person instead of an object, it may decide to interact
with that person. Lastly, it reflects on events in memory. This
information is summarised in the following code block.

def move(
perceived_events ,
Ilm_model ,

) —> str :
self.add_to_memory(perceived_events)
self .retrieve (perceived_events)
self.plan(llm_model, self.retrieved)
self.interact(self.retrieved ,

IIlm_model)
self . reflect (1lm_model)
return self.action

The action that is returned is a string, which is in the for-
mat {subject}:{predicate}:{object} . The ac-
tion string specifies to the agent in the Unity environment
to move to the location in the subject field, if it indeed
contains a tree structure as discussed earlier. The agent should
in that case interact with the object at that location. If the
subject is a person, then it can start a conversation with the
person. This action string can once again be stored in the unity
system so that the next person observing the scene knows
that Camila:is_using:the_knife. The movement and
animation of the agent when given such an action string can
be implemented using Convai’s A capabilities with unity,
which is not the focus of this paper.

V. DISCUSSION

Due to time constraints, there is no systematic evaluation
of the effectiveness of the system. As a result, the discussion
will be based on the experience of the author using the system
during development.

3convai.com/blog/adding-actions-for-ai-characters-in-unity’

One clear problem that came to light was the slow inference
time when chatting. The time needed for the agent to generate
a response is of critical importance and should be minimized
as mentioned in the introduction. The author imagines the
underlying cause behind the slow inference time is that there is
a lot of prompts that need to be queried before the actual query
for the response message. To explain this further, it’s important
to understand the conversation architecture, as described in
section and in Figure []

First, the agent retrieves general information about the
player from the memory stream based on the name of player
as the query key. This involves searching through the entire
database for past interactions with the player. This search
process includes duplicating the database, sorting it and mea-
suring the parameters ‘relevance’, ’importance’ and ’recency’
by going through the database 3 separate times. After which,
the top 30 nodes are selected.

After obtaining some good information about the player, the
next step would be to try to find out what the relationship is
between the player and the character. This requires another
query to the LLM and once the relationship status is found,
there is a new query to the database. The database is queried
to retrieve memory objects that are relevant to the information
about the relationship status and the current chat history. This
involves duplicating the database again, sorting it and choosing
the top 30 elements.

The reader must remember, this is done every time a
response must be generated. It doesn’t take a genius to see
that significant time gains can be achieved here. the system
redundantly retrieves information that’s already available if it
was cached. Also, using a vector database instead of a JSON
file can increase performance. A vector database is made to
optimise queries for semantic search.

There needs to be a further investigation into the architecture
from Joon Sung Park et al. [[7]]. Particularly if it is well-suited
for real-time communication and how and where performance
optimisation can be done. This should be achieved by identi-
fying the hot paths within the codebase, by using any profiling
tool available for python.

Another point of discussion is the difference between using
a local LLM and openAI’s LLM. The local LLM that has been
used is made by ’mistralAI’ and is called ’mistralai/Mistral-
7B-Instruct-v0.2’ ﬂ From experience, it was observed that the
local model took significantly longer to respond compared
to querying the OpenAl API E} The model was run on a
powerful workstation equipped with a Nvidia GeForce RTX
3090, which has 24GB of VRAM. While hardware limitations
likely contributed to this delay, it is possible that the system
could be further optimized by reviewing the code and batching
prompts where possible in order to fully use the advantages of
a GPU. However, one key takeaway is that running such a local
model on everyday machines may not be feasible. This raises
questions about how the final product should be designed. If

4By the time of writing this paper, v3 replaced v2.
Shttps://openai.com/index/openai-api/

https://convai.com/blog/adding-actions-for-ai-characters-in-unity
https://openai.com/index/openai-api/

the goal is for the game to run smoothly on average gaming
PCs, it may be more practical to query LLM models via a
service rather than run them locally.

A. Prompting For Conversation

In this project, two fictional agents were build with their
own personal characteristics, see Appendix During de-
velopment, they were prompted in order to see what kind of
conversation they would hold. From experience, it was ob-
served that they do remember earlier conversations, they also
talk in a way that reflects their personality, but sometimes they
show artifacts of being a large language model, for example,
pretending knowing the person whom they are talking to even
if they had no prior conversation.

As mentioned earlier, while generating a response, there are
other variables generated as well, such as the trust level, the
emotion value and the end value. From experience, the author
noticed that the trust value correctly reflected the situation
based on the given prompts. In the scenario where the user
would comes off as aggressive and not show any appreciation
whatsoever by constantly cursing the agent, resulted in the
trust level reducing to lower values. There were more difficul-
ties in getting the end boolean variable right. It was observed
that it sometimes may stop unnaturally in a situation where it
could actually continue the conversation.

Overall, more extensive testing is needed in order to know
the effectiveness and reliability of this method. Once again,
no extensive testing was done in order to evaluate the result-
ing implementation of the agents. The utterances were from
experience somewhat believable responses, but it is without a
doubt not yet fully human. It is sometimes too eager to help. It
does not have awkward situations such as humans would have.
Once again, further testing is needed as will be explained in
section

B. self-determinism of agents

The author observed a big discrepancy between using a
local model compared to openAl GPT-4 when it came to
self-determinism. In some of the complex prompts, the GPT-4
version successfully gave the answer to the location where a
certain action should take place, whilst the local model would
hallucinate and throw new locations or straight up not respect
the formatting rules. This could be due to the fact that the
7B model is not expressive enough or due to the fact that the
prompt is too complex and should be split up into multiple
smaller prompts in order for the local model to understand
the query fully.

VI. CONCLUSION

This paper provided the design and development of a
generative agent nearly capable of modelling human conver-
sational behaviour. By implementing the same architecture as
proposed by Joon Sung Park et al. that combined LLM’s with
memory, reflection, and planning functionalities. Additionally,
this paper explained how to achieve facial expressions when
interacting with the agent. This was achieved using emotion

and trust values and giving the agent the ability to stop the
conversation if wanted.

One of the problems that came to light during development
was the slow inference time, particularly when using a local
LLM. This issue stems from redundant attempts to query the
memory of an agent. There was high need for performance
optimization, possibly by using vector databases or caching
mechanisms. Furthermore, comparisons between the local
Mistral-7B model and OpenAI’'s GPT-4 revealed some differ-
ences in response accuracy. This raised some questions about
the feasibility of using local models in real-time applications
on consumer hardware.

While the system demonstrated promising results, such
as agents remembering past conversations and responding
appropriately based on trust and emotion. There were also
limitations experienced in generating fully human-like inter-
actions. There is a need for more research and testing to ensure
a more natural, believable conversations.

VII. FUTURE WORK

One of the key problems should be addressed as fast
as possible, which is the focus on optimising the system.
Especially in context of real-time performance. It would also
be interesting to see to what degree local LLM’s can compete
with OpenAI’s model.

Furthermore, extensive testing is needed in order to rigor-
ously measure the believability factor of the agents. One of
the ways in how to test the humanness of the generative agent
is through conducting theory of mind test, the ability to track
other people’s mental states [[12]. In those kind tests, humans
and LLM’s are compared on set of measurements that try to
measure different human abilities, such as understanding false
beliefs and interpreting indirect requests and recognizing irony
and faux pas [[12].

The goal would be to test the agent on the effectiveness
of simulating human behaviour in order to use it in the ETAP
game. One type of test that could be used is to let the agent be
an interviewer, and let a group of test subject (humans) solicit
for a fictional job. Each person would tell the interviewer about
his set of skills and why he should be hired. At the end of the
day, the system would query the agent in order to know which
person would be the best fit for the job. Measurements can
be taken with metrics such as the bot usability scale, system
usability scale and social responsiveness scale [9].

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

Haneen Almurashi, Rahma Kammoun, Walaa Alharthi, Mohammed Al-
Sarem, Mohammed Hadwan, and Slim Kammoun. Augmented reality,
serious games and picture exchange communication system for people
with asd: Systematic literature review and future directions. Sensors,
22, 02 2022.

Paul Ekman and Wallace Friesen. Unmasking the Face: A Guide to
Recognizing Emotions From Facial Clues. 01 2003.

Dominique Endres, Ludger Tebartz van Elst, Simon Meyer, Bernd Feige,
Kathrin Nickel, Anna Bubl, Andreas Riedel, Dieter Ebert, Thomas
Lange, Volkmar Glauche, Monica Biscaldi-Schifer, Alexandra Philipsen,
Simon Maier, and Evgeniy Perlov. Glutathione metabolism in the pre-
frontal brain of adults with high-functioning autism spectrum disorder:
An mrs study. Molecular Autism, 8, 03 2017.

Kamran Khowaja, Dena Al-Thani, Bilikis Banire, Siti Salwah Salim,
and Asadullah Shah. Use of augmented reality for social communication
skills in children and adolescents with autism spectrum disorder (asd):
A systematic review. In 2019 IEEE 6th International Conference on
Engineering Technologies and Applied Sciences (ICETAS), pages 1-7,
2019.

Panagiotis Kourtesis, Evangelia-Chrysanthi Kouklari, Petros Roussos,
Vasileios Mantas, Katerina Papanikolaou, Christos Skaloumbakas, and
Artemios Pehlivanidis. Virtual reality training of social skills in adults
with autism spectrum disorder: An examination of acceptability, usabil-
ity, user experience, social skills, and executive functions. Behavioral
Sciences, 13(4), 2023.

Yiu-kai Ng and Maria Pera. Recommending social-interactive games for
adults with autism spectrum disorders (asd). pages 209-213, 09 2018.
Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel
Morris, Percy Liang, and Michael S. Bernstein. Generative agents:
Interactive simulacra of human behavior, 2023.

Robert Plutchik. The nature of emotions human emotions have deep
evolutionary roots, a fact that may explain their complexity and provide
tools for clinical practice. American scientist, 89(4):344-350, 2001.
Christian Poglitsch and Johanna Pirker. A qualitative investigation to
design empathetic agents as conversation partners for people with autism
spectrum disorder. In 2024 IEEE Conference on Games (CoG), pages
1-4, 2024.

Christian Poglitsch, Saeed Safikhani, Erin List, and Johanna Pirker. Xr
technologies to enhance the emotional skills of people with autism spec-
trum disorder: A systematic review. Computers Graphics, 121:103942,
2024.

Tamara E Rosen, Carla A Mazefsky, Roma A Vasa, and Matthew D
Lerner. Co-occurring psychiatric conditions in autism spectrum disorder.
International review of psychiatry, 30(1):40-61, 2018.

James Strachan, Dalila Albergo, Giulia Borghini, Oriana Pansardi,
Eugenio Scaliti, Saurabh Gupta, Krati Saxena, Alessandro Rufo, Stefano
Panzeri, Guido Manzi, Michael Graziano, and Cristina Becchio. Testing
theory of mind in large language models and humans. Nature Human
Behaviour, pages 1-11, 05 2024.

Furtwangen University, Technical University Graz, University Hospital
Freiburg, Obuda University, and University of Canterbury. Early di-
agnosis and personalized therapy in autism spectrum to prevent severe
disorders (etap). ERA PerMed, 2022. Project ERAPERMED2022-276.
Jinan Zeidan, Eric Fombonne, Julie Scorah, Alaa Ibrahim, Maureen
Durkin, Shekhar Saxena, Afiqah Yusuf, Andy Shih, and Mayada Elsab-
bagh. Global prevalence of autism: A systematic review update. Autism
Research, 15, 03 2022.

VIII. APPENDIX
A. UDP Protocol
The start message is sent when the unity client is being set
up.
{

"type": "STARTMESSAGE",
"data": {
"fork_sim code": "string",
"sim_code": "string"

}

The prompt message is sent when the player wants to talk
with a NPC.

{
"type": "PROMPTMESSAGE",
"data": {
"persona_name": "string",
"user_name": "string",
"message": "string"

}

The move message is periodically sent from the unity client
to the python endpoint. After each observation made by the
agent, a move message is sent.

{
"type": "MOVEMESSAGE",
"data": [
{
"name": "string",
"curr_location": {
"world": "string",
"sector": "string",
"arena": "string"
}I
"events": [
{
"action_event_subject":
"action_event_predicate":
"action_event_object": "string",
"action_event_description":

}

Each persona or agent needs to know the current time, this
time can be set from the unity endpoint. The current time is
used in order to make plans.

{
"type": "UPDATE_META_ MESSAGE",
"data": {

"curr_time": "string"

"string",
"string",

}

Each persona or agent has certain information or parameters
that can be adjusted. Those parameters are stored in a JSON
file at the python server. With this request, those values can
be changed from the unity endpoint.

{
"type": "UPDATE_PERSONA_MESSAGE",
"data": {
"name": "string",
"scratch_data": {
"first_name": "string",
"last_name": "string",
"age": "integer",
"living_area": {
"world": "string",
"sector": "string",
"arena": "string"
} 14
"recency_w": "integer",
"relevance_w": "integer",
"importance_ele_n": "integer"

}

the name of the character which the user is playing can be
changed.

{
"type": "UPDATE_USER_MESSAGE",
"data": {

"old_name":
"name" :

"string",
"string"

"string"

If a persona character will be added to the game, it can also
be dynamically added through the following call where certain
parameters about the persona needs to be known upfront.

{
"type": "ADD_PERSONA_MESSAGE",
"data": {
"name": "string",
"scratch_data": {
"curr_location": {
"world": "string",
"sector": "string",
"arena": "string"
}I
"first_name": "string",
"last_name": "string",
"age": "integer",
"innate": "string",
"look": "string",
"learned": "string",
"currently": "string",
"lifestyle": "string",
"living_area": {
"world": "string",
"sector": "string",
"arena": "string"
}I
"recency_w": "integer",
"relevance_w": "integer",
"importance_w": "integer",
"recency_decay": "integer",
"importance_trigger_max": "integer",
"importance_trigger_curr": "integer",
"importance_ele_n": "integer"
}I
"spatial_data": {
"FantasyLand": {
"Northern Realm": {
"Dragon’s Lair": ["string"],
"Ice Cavern": ["string"]

B. Persona Characteristics

"curr_location" : {
"world": "Graz",
"sector" "Saint Martin’s Church",
"arena" "cafe"

}l

"daily_plan_req": "Florian gardens at 9am

everyday, and studies in the afternoon game
development until 6pm, after which he goes
for some drinks in the evening.",

"name": "Florian",

"first_name": "Florian",

"last_name": "Schwarz",

"age": 34,

"innate": "sarcastic, dark and vulgar humor,
helpfull",

"look": "Florian has blond hair and blue eyes.
Body size is on the smaller side.",

"learned": "I'm often sarcastic, like when I

make an absurd statement such as ransomware
in Rust not being morally wrong. C# Unity
GameDev by day, Programmer specializing in
Java, working on a POS system like Orderman,
by night. Systems: Acer Nitro 5, Lenovo X1
Yoga with Arch Linux, both with arch linux.
Browsers and Editors: Ungoogled-chromium,
VSCodium. IDEs: IntellidJ, Android Studio.
Prefer Java for coding tasks.",

"currently": "Currently you are in Graz at
the Cafe Mild",
"lifestyle": "Florian goes to bed around llpm,

awakes up around 6am, but sometimes if he
has a deadline to reach, the sleeptimes can
become hectic and he would sleep at 4am and
wake up at 7am. He likes balancing learning,
coding, and project planning. Seeking
mentorship or collaboration opportunities.
Seeking detailed explanations for technical
concepts.",

"living_area": {
"world": "Graz",
"sector" "Florian’s apartment",
"arena" "main room"
}I
"curr_emotion": "neutral",
"curr_trust": {},
"recency_w": 1,
"relevance_w": 1,
"importance_w": 1,

"recency_decay": 0.995,

	Introduction
	Game Overview
	System Design

	Related Work
	Generative Agents
	 Memory
	 Reflection
	Planning

	Conversational Architecture
	 Prompting For Conversation
	 Self-determinism of Agents

	Discussion
	Prompting For Conversation
	self-determinism of agents

	Conclusion
	Future Work
	References
	Appendix
	UDP Protocol
	 Persona Characteristics

