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Abstract

Model counters determine the number of satisfying assignments to Boolean formu-
las. These solvers employ component caching to avoid redundant computation by
storing previously encountered components along with their model counts. The
symmetrical scheme represents the state-of-the-art approach to component caching,
using canonical graph labels on equivalent graph representations of components to
detect structurally identical components that traditional schemes miss. However,
computing canonical labels introduces severe computational overhead, with cache
access times exceeding traditional schemes by several orders of magnitude.

This thesis investigates whether the benefits of the symmetrical scheme can be
preserved while substantially reducing its computational overhead through multi-
layer cache architectures. The proposed design introduces intermediate filtering
layers that use lightweight graph invariants to reject non-matching components
before invoking expensive canonical labelling. Three research questions guide the
investigation: which invariants provide optimal trade-offs between discriminative
power and computational cost, how multi-layer architectures affect solver perfor-
mance compared to single-layer caching and whether compact encodings can further
reduce memory overhead.

The experimental evaluation across 212 diverse problem instances establishes
that invariants combining basic structural properties with average neighbour degree
sequences achieve 97% discriminative precision while operating approximately
one hundred times faster than canonical labelling. The optimal two-layer cache
configuration achieves a 13% improvement in solving time (PAR-2) and solves eleven
additional instances compared to single-layer baselines, with particularly dramatic
speed-ups on certain problem classes. This configuration employs a combination of
number of edges and average degree as graph invariants, paired with cache-aware
centrality branching for variable selection and the xxHash algorithm for computing
hash values.

However, the investigation also reveals negative results. The graph quantiza-
tion technique that compresses canonical labels degrades rather than improves
performance. This outcome indicates that the multi-layered cache approach has
already addressed memory pressure, rendering further compression counterpro-
ductive. Hash function quality emerges as equally important as invariant precision,
with poor hash distribution negating the benefits from even highly discriminative
invariants.

iv



Samenvatting

Modelcounters proberen het aantal mogelijke oplossingen voor Booleaanse formules
te tellen. Deze programma’s gebruiken een cache om redundante berekeningen
te vermijden door eerder aangetroffen deelformules op te slaan, samen met hun
oplossingsaantallen. Het symmetrisch schema vertegenwoordigt de state-of-the-art
codering om componenten in de cache op te slaan. Men zet formules om in hun
equivalente graafvorm en berekent canonieke graaflabels, die vervolgens in de
cache worden opgeslagen samen met het aantal oplossingen van die formule. Het
zijn die canonieke labels die worden vergeleken met andere componenten om te
beslissen of de model count van een bepaalde component kan worden hergebruikt.
Het berekenen van canonieke labels introduceert echter aanzienlijke rekenkundige
kosten.

Deze thesis onderzoekt of de voordelen van het symmetrisch schema behouden
kunnen blijven terwijl de rekenkundige kost substantieel wordt verminderd. Dit ge-
beurt door middel van de implementatie van een meerlagige cache-architectuur. De
voorgestelde meerlagige cache gebruikt graaf-invarianten om niet-overeenkomende
componenten af te wijzen voordat dure canonieke labels worden berekend. Drie
onderzoeksvragen leiden het onderzoek: welke invarianten bieden optimale afwe-
gingen tussen onderscheidend vermogen en rekenkundige kosten, hoe beinvloeden
meerlagige architecturen de prestaties van de solver in vergelijking met enkellagige
caching en kunnen compacte coderingen de geheugenkost verder verminderen?

De experimentele evaluatie over 212 diverse probleeminstanties toont aan dat op
buren gebaseerde invarianten, in combinatie met kleine structurele eigenschappen,
een onderscheidende precisie van 97% bereiken, terwijl ze ongeveer honderd keer
sneller berekend kunnen worden dan canonieke labels. De optimale tweelagige
cache-configuratie behaalt een verbetering van 13% in oplostijd (PAR-2) en lost 11
extra instanties op vergeleken met een enkellagige cache, met bijzonder dramatische
versnellingen voor bepaalde probleemklassen. Deze configuratie maakt gebruik
van een combinatie van aantal bogen en gemiddelde graad als graaf-invarianten,
cache-bewuste centraliteitsscores als branching heuristiek en het gebruik van xxHash
voor het berekenen van hashwaarden.

Het onderzoek onthult echter ook negatieve resultaten. De graafkwantisatie-
techniek die canonieke labels comprimeert, verslechtert de prestaties van de solver,
omdat de meerlagige cache de geheugendruk reeds heeft aangepakt. Hashfunctie-
kwaliteit blijkt even belangrijk als invariantprecisie, waarbij een slechte hashdistri-
butie de voordelen van zelfs zeer onderscheidende invarianten tenietdoet.
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Chapter 1

Introduction

The model counting problem, also referred to as #SAT, is about counting the number
of possible assignments that would satisfy a Boolean formula. Unlike the decision
problem SAT, which only asks whether at least one satisfying assignment exists,
#SAT asks how many such assignments there are. This makes #SAT strictly harder
in a complexity-theoretic sense: it is #P-complete (Valiant, 1979), meaning it is at
least as hard as NP-complete problems. In fact, solving #SAT would allow one to
solve SAT, but not necessarily the other way around.

There exist many computational applications that can be solved by representing the
problem as a Boolean formula and counting the models as a solution (Sang et al.,
2005a). Those applications include probabilistic inference (Chavira and Darwiche,
2008), neural network verification (Baluta et al., 2019), computational biology (La-
tour et al., 2017) and software verification (Teuber and Weigl, 2021). Some concrete
examples include calculating the probability of a query in a probabilistic database
(Gribkoff et al., 2014), such as Google’s Knowledge Vault (Dong et al., 2014), or in
probabilistic logic programs like Problog (De Raedt et al., 2007). In such cases, the
logic program is translated into a propositional theory, after which the models of
that theory are counted (De Raedt and Kimmig, 2015).

A #SAT solver is a computer program designed to solve the model counting problem.
While many such solvers build upon the Davis-Putnam-Logemann-Loveland back-
tracking search algorithm (DPLL), their true strength comes from more advanced
techniques that improve efficiency. One key technique is component decomposition.
This involves breaking down a Boolean formula into independent subformulas that
can be solved separately. For example, the formula (A V =B) A (C V D) consists of
two parts that do not share variables and can therefore be counted independently.
The total count is then the product of the counts of these subformulas.



1. INTRODUCTION

To maximize the benefits of component decomposition, modern solvers employ
component caching to avoid redundant computation. When the search algorithm
decomposes a formula and solves individual components, it stores the model count
of each component. If an identical component appears later in the search tree, the
solver can reuse this precomputed count rather than recalculating it.

The effectiveness of component caching depends largely on how components are
represented in the cache. Traditional caching schemes such as the standard scheme
(STD) (Sang et al., 2004) store the contents of clauses explicitly. Unsatisfied clauses
are serialized by listing their unassigned literals. The hybrid coding scheme (HC)
encodes components by the IDs of their unsatisfied clauses and their unassigned
variables. More advanced variants include the hybrid omitting scheme, which ex-
cludes binary clauses and the hybrid packing scheme (HCOP), which compresses the
representations into a bit stream to reduce memory usage (Thurley, 2006).

These traditional representations share a fundamental limitation: they distinguish
between components that are structurally identical. Consider the components
(AV =B) and (C VvV —=D). Both consist of a single clause containing one positive
literal and one negative literal, making them structurally identical. However, tradi-
tional caching schemes treat them as distinct entries because they involve different
variable names, leading to unnecessary recomputation.

To address this limitation, recent work (van Bremen et al., 2021) has introduced sym-
metrical schemes that employ canonical graph representations to detect structural
equivalence. By representing each component as a coloured graph and computing
its canonical labelling, these schemes can recognize isomorphic components regard-
less of variable naming differences. When the solver encounters a new component,
it computes its canonical form and checks whether an isomorphic component has
already been cached. If a match is found, the stored model count can be reused,
effectively collapsing all structurally equivalent components into a single cache
entry. This approach has demonstrated substantial performance improvements on a
benchmark suite of combinatorial problem instances.

However, the benefits of symmetrical schemes come at a significant cost. Comput-
ing canonical graph labellings is computationally intensive, especially for larger
components. Additionally, storing canonical labellings as adjacency lists requires
substantially more memory than traditional component encodings. A cached com-
ponent that is never retrieved again represents a net loss, as the computational
effort and memory spent on canonicalization provided no benefit. This observation
suggests that a more selective approach might be advantageous, one that computes
expensive canonical representations only for components that are likely to be ac-
cessed multiple times.

This thesis investigates whether the computational and memory overhead of sym-
metrical schemes can be reduced while preserving their ability to detect structural
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equivalence. The central approach explored is multi-layer caching, which introduces
levels of indirection between the initial component representation and the defini-
tive canonical form. Rather than immediately computing the symmetrical scheme
for every component, the solver first stores components using a cheaper encoding
combined with graph invariants. Only when a component achieves a hit in this
higher-level cache, indicating potential for future reuse, does the solver invest in
computing its canonical representation and moving it to a lower-level cache that
employs the symmetrical scheme.

The introduction of multi-layer caching raises several important research questions.
First, the choice of graph invariant for the higher-level cache significantly affects
performance. The encoding must be cheap enough to avoid introducing excessive
overhead on every component, yet it should provide sufficient discriminative power
to filter out non-matching candidates before triggering expensive canonicalization.
Understanding which invariants or combinations thereof maximize cache hit rates
while minimizing average memory access time across diverse benchmark instances
represents the first research question.

Second, the architecture of the cache hierarchy itself requires careful consideration.
A two-layer design or adding a third layer might improve the trade-off between
lookup cost and discriminative power. Each additional layer introduces overhead in
terms of both lookup complexity and memory consumption, but it also provides an
opportunity to employ increasingly strong invariants that progressively narrow the
candidate set before invoking full canonicalization. The second research question
therefore examines how multi-level cache architectures with two or three layers
affect solver performance, as measured by PAR-2 score, across a benchmark suite.

Third, even when components reach the canonical cache, opportunities remain to
reduce their memory footprint. Compact encoding schemes that pack the canonical
labelling into a bitstream using delta encoding and variable-length fields can signifi-
cantly reduce per-component memory consumption. However, such compression
introduces additional computational overhead during encoding and comparison
operations. Understanding how these compact representations affect the overall
solver performance measured by PAR-2 score will the third research question.

The proposed multi-layer caching approach has been implemented on top of the
state-of-the-art model counter SYMGANAK, creating a new solver variant called ISYMGANAK!.
The implementation includes the multi-layer cache architecture along with amend-
ments to the variable branching heuristic. Evaluation on a comprehensive bench-
mark suite of 212 problem instances demonstrates that the multi-layer cache archi-
tecture combined with the improved branching heuristic achieves approximately
13% improvement in PAR-2 score compared to SYMGANAK.

Ihttps://github.com/IbrahimElk/isymganak
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1. INTRODUCTION

The remainder of this thesis is organized as follows. Chapter 2 provides the neces-
sary background on model counting, component caching and graph canonicalization
techniques. Chapter 3 formally states the problem, formulates three research ques-
tions and motivates the multi-layer caching approach. Chapter 4 describes the
implementation details of two-layer and three-layer cache architectures as well
as the graph quantization techniques for compact representation. Chapters 5-8
presents experimental results evaluating the proposed approaches across bench-
mark instances. Finally, Chapter 9 concludes with a summary of findings and
directions for future work.



Chapter 2

Background

The chapter begins with Section 2.1, which introduces the basic concepts of proposi-
tional logic including syntax, semantics and assignments. Section 2.2 then defines
the model counting problem and presents a taxonomy distinguishing exact counters
from approximate counters, as well as DPLL-based approaches from knowledge
compilation methods.

Section 2.3 examines the core #DPLL algorithm and its essential extensions. This
section covers preprocessing techniques, unit propagation, clause learning, compo-
nent decomposition and traditional component caching establishing the baseline
solver architecture upon which modern improvements build. The discussion natu-
rally leads to Section 2.4, which describes how components have historically been
encoded in cache systems, progressing from the standard scheme through hybrid
encodings to the packed representation that achieves substantial memory reduction.

The chapter then transitions to symmetry-aware techniques. Section 2.5 introduces
the concept of structural symmetry between components and demonstrates how
graph isomorphism and canonical labeling can identify components that differ in
variable names but share identical structure. Section 2.6 details the practical imple-
mentation of symmetric caching, explaining how adjacency lists represent graphs
and how canonical forms enable symmetry detection.

Section 2.7 provides an overview of the cache architecture, covering hash table
organization with chaining, replacement policies and the semantic relationships
between cached components that prevent undercounting in the presence of learned
clauses. Finally, Section 2.8 addresses branching heuristics, describing component
ordering strategies and the evolution of variable selection heuristics from basic literal
counting through VSIDS, VSADS and ultimately to the cache-aware CSVSADS and
symmetry-aware ICSVSADS heuristics that guide modern solvers.



2. BACKGROUND

2.1 Propositional Calculus

This section introduces the basic concepts of propositional logic such as assignments
& satisfiability. It will serve as the first building block for explaining the sharp
satisfiability problem and the #DPLL algorithm. The following section is heavily
based on the book The Satisfiability Problem (Schoning and Torén, 2013) and by the
course work Modelling Of Complex Systems (Denecker, 2025).

Propositional calculus (or propositional logic) formulas are built from propositional
variables in combination with propositional connectives. A propositional variable is
either true or false. The propositional connectives are negation (—), conjunction (A)
and disjunction (V). These three operators form a complete set of connectives.

Definition 1 (Syntax of propositional calculus). The set of well-formed formulas is
defined inductively as follows (Denecker, 2025):

e If P is a propositional variable, then P is a formula

 Ifa, B are formulas, then (—a), (x A B), (« \VV B) are formulas

Too many parentheses in a formula can harm its readability (Denecker, 2025). The
associativity rule can be used to make parentheses implicit. Specifically, negation (—)
has higher precedence than conjunction (A) and conjunction binds more strongly
than disjunction (V). As an example, =P V Q A R is equivalent to (—=P) V (Q A R).

Definition 2 (Semantics of propositional calculus). A truth table lists every possible
assignment of truth values to the propositional variables and shows the resulting truth
value of the logical formula (Denecker, 2025).

TABLE 2.1: Truth tables of logical connectives with two propositional variables.

P Q PAQ P QO PVQ

T T T T T T P =P
T F F T F T T F
F T F F T T F T
F F F F F F

A literal refers either to a variable or a negated variable. The polarity or phase of a
variable also indicates whether the variable is set to False or True. The literals of a
formula F are denoted lits(F), and its variables are denoted vars(F).



2.2. #SAT

Definition 3 (Assignment). An assignment ¢ is a mapping from (some of) the variables
to the values T or F (Schoning and Tordn, 2013). This is denoted as:

oc={x1=ay,xp=4ay,..., Xy =ay} whereay,ay,...,ax € {T,F}

The residual formula, denoted as F/|, is the formula obtained by applying the
assignment o to F. Itis the formula that results from substituting the values assigned
by o into F. A formula F is called satisfiable if there exists a total assignment ¢, i.e.
an assignment that assigns a truth value to every variable in F such that |, = T.
A satisfying assignment ¢ for a formula F is also called a model of F. Denote by
Rr the set of all models of a formula F. Hence, for the sharp satisfiability problem,
all the possible models are counted which is denoted as |Rf|.

Definition 4 (Normal form propositional calculus).
e A clause is a disjunction (V) of literals.

e A formula is in conjunction normal form (CNF) if it’s a conjunction (N\) of clauses.

In propositional logic, for every formula F there is an equivalent formula G in
conjunctive normal form (CNF) (Basson and O’Connor, 1959). The size of a clause
is the number of literals it contains, which is denoted by |C|. Clauses with only
one literal are called unit clauses. CNF provides a standardized way to express
propositional formulas. There exist other normal forms such as negation normal
form (NNF), disjunctive normal form (DNF) and others such as DNNF and sd-
DNNE.

2.2 #SAT

Propositional model counting, also known as #SAT, involves determining the total
number of models for a given propositional formula. This refers to counting the
distinct truth assignments to the formula’s variables that result in the formula evalu-
ating to true (Gomes Carla P. et al., 2009).

Model counting generalizes the SAT problem and is recognized as the prototypical
#P-complete problem (Valiant, 1979). Since each variable is Boolean, there are
2N total possible assignments, where N is the number of distinct variables in the
formula.

2.21 Taxonomy Of Model Counters

There are two major categories of model counters, exact model counters and ap-
proximate model counters (Gomes Carla P. et al., 2009). Within exact counting,

7



2. BACKGROUND

approaches are further differentiated between those that rely on DPLL-style ex-
haustive search and those that leverage knowledge compilation (Gomes Carla P.
et al., 2009). A brief overview will be presented below, emphasizing the distinctions
between these methods.

DPLL based model counting

The DPLL algorithm, initially conceived for SAT solvers (Davis et al., 1962), was later
adapted for the task of #SAT and renamed #DPLL. The #DPLL algorithm is defined
on conjunctive normal form (CNF) formulas. At its core, #DPLL is a backtracking
search algorithm that tries to find all assignments that satisfy a formula . A more
detailed explanation of this process follows in subsequent sections.

Example 1. To illustrate, consider the following formula in CNF:
F=(AVB)A(—AV-B)

The algorithm initially attempts to assign A the value true. Afterward, it may assign B to
true as well. However, upon evaluation, it realizes that the latest assignment does not satisfy
the formula. Consequently, the algorithm backtracks, revising B to false instead. Finally, it
determines that { A = true, B = false} is a model of the formula. Unlike standard DPLL,
which halts upon finding the first satisfying assignment, #DPLL continues backtracking to
enumerate all satisfying assignments.

Knowledge compilation based model counting

A different approach for exact model counting consists of compiling the given CNF
formula into a deterministic decomposable negation normal form (d-DNNF) (Dar-
wiche, 2004). Once in d-DNNF form, the model count can be deduced in polynomial
time in the size of the compilation (Darwiche, 2000). However, despite the advantage
of polynomial-time counting, the compilation process itself remains computationally
challenging. A useful connection between knowledge compilation and DPLL-based
approaches is that d-DNNF compilation can be achieved by capturing the execution
trace of DPLL-based model counters (Huang and Darwiche, 2005).

Example 2. F can be rewritten in disjunctive normal form (DNF) as:
F=(-AAB)V(AA-B)
In this case, an equivalent smooth d-DNNF representation can be constructed, as depicted

in following Figure 2.1.

Model counting on the sd-DNNF circuit proceeds bottom-up: each leaf literal contributes
1, conjunction nodes multiply the counts of their children and disjunction nodes sum the
counts of their children. For the circuit in Figure 2.1, the left AND node has count 1, the right
AND node has count 1, and the root OR node sums these to give the total model count 2 for F
(Kimmig et al., 2017).
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FIGURE 2.1: The sd-DNNF circuit of formula F (Kimmig et al., 2017).

Approximate model counting

In practical applications, precise counts may not always be necessary. Approxi-
mate solutions that provide reasonably accurate estimations suffice. As long as the
method is computationally efficient, approximate counting can serve as a viable
alternative to exact computation (Gomes Carla P. et al., 2009).

Several algorithms have been developed for this purpose, including ApproxMC
(Chakraborty et al., 2013), which uses random hashing (via XOR constraints) and
SAT solving to estimate the number of models with high confidence. The solver
Ganak (Sharma et al., 2019), on the other hand, implements a probabilistic component
cache scheme and is the first probabilistic exact model counter: given a formula F
and a confidence parameter 4, it returns a count that is guaranteed to be the number
of solutions of F with confidence at least 1 — 6. Hashes provide a more compact
representation of components to improve cache utilization, but they can produce
incorrect counts due to hash collisions (Sharma et al., 2019).

2.3 #DPLL Based Solver

This section outlines how the basic #DPLL algorithm works and explains certain
extensions added on top of #DPLL including component decomposition, clause
learning and component caching.

2.3.1 Preprocessing

Despite advances in #SAT solving, formulas encountered in practical applications
can still be too large for solvers. Tools such as automated encoding techniques can
introduce redundant clauses and variables, which would enlarge the search space
and in turn make the solver performance less efficient (Biere, Armin and Jarvisalo,
Matti and Kiesl, Benjamin, 2021). To mitigate this issue, preprocessing techniques
are employed, applying automated formula simplifications prior to solver execution
to enhance overall efficiency (Biere, Armin and Jarvisalo, Matti and Kiesl, Benjamin,
2021). A range of preprocessing strategies for CNF formulas has been developed,
including unit propagation and other basic clause elimination techniques.
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2.3.2 #DPLL Algorithm

The basic backtracking algorithm works by initially choosing a variable and assign-
ing it a truth value. Afterwards, the formula is simplified by removing all the clauses
that become true and all literals that become false from the remaining clauses. In
the next step, it checks if the simplified formula is satisfiable. If this is the case, the
original formula is satisfiable, the count is updated and the search is resumed by
backtracking.

However, if the formula is unsatisfied at any point, #DPLL backtracks to the most
recent decision point, flips the value of the last assigned variable, and resumes the
search from there. In the following subsections, a number of features that improve
upon the #DPLL algorithm are described (Gomes Carla P. et al., 2009).

2.3.3 Partial Counts

Consider a formula F with n variables, where the #DPLL algorithm has already
assigned truth values to t of those variables. If the residual formula is satisfied yet
there are remaining unset variables, the algorithm can assign arbitrary values to
these variables since the formula is already satisfied (Gomes Carla P. et al., 2009).

As a result, the algorithm associates 2" ! solutions with this branch. These solutions
represent all possible ways of assigning values to the remaining n — t unset variables
(Gomes Carla P. et al., 2009).

2.3.4 Unit Propagation

If a formula consists of a unit clause, it can only be satisfied by an assignment that
sets the clause’s literal to true. Upon detecting of a unit clause in the CNF formula
F, the unit clause rule eliminates all clauses that contains this literal and removes
its negation from any remaining clauses. Unit propagation can also be referred to as
Boolean constraint propagation (BCP) (Biere, Armin and Jarvisalo, Matti and Kiesl,
Benjamin, 2021).

Unit propagation systematically applies this rule in an iterative manner until one of
two outcomes is reached. Either no unit clauses remain or the process results in the
derivation of an empty clause. In the latter case, a conflict arises, meaning that every
literal within the conflicting clause evaluates to false (Biere, Armin and Jarvisalo,
Matti and Kiesl, Benjamin, 2021).

Example 3. Consider the following simple formula F = (AV B) A (A) AN (=BV C) A
(=C). The formula contains the unit clause (A). By applying the unit clause rule, any
clause containing A is eliminated, leaving F = (—=BV C) A (—C).

10
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2.3.5 Clause Learning

One of the main reasons for the widespread adoption of solvers in various applica-
tions is due to clause learning (Marques-Silva et al., 2021). During the execution of a
#SAT algorithm on a CNF formula F, it is possible for a partial assignment ¢ to be
constructed in such a way that one of the clauses C; in F becomes a conflict clause.
When this occurs, it becomes impossible to extend the current assignment ¢

When a conflict clause arises, resolution is applied to construct a clause that gives the
reason for the conflict. This clause is called the learned clause and allows to perform
backjumping, i.e. to backtrack over multiple levels. Moreover, the clause is stored to
avoid such failed assignment to be repeated (Denecker, 2025).

For an intuitive explanation and visual demonstrations of the underlying mech-
anisms of clause learning, the reader is referred to online visualisation resources.
Clause learning is also depicted in Algorithm 2.

2.3.6 Component Analysis

Definition 5 (Component). Consider a partitioning of a formula F into sets of clauses
v = CyU--- UG,y such that vars(C;) Novars(C;) = @ for i # j. Then each C; is called
a component of F, and the number of models satisfies |[Rz| = T, |Rc,| (van Bremen
etal., 2021).

Consider the constraint graph G associated with a CNF formula F. In this graph,
the vertices represent the variables of 7 and an edge exists between two vertices if
the corresponding variables appear together in any clause of F.

Example 4. An example of component decomposition on a formula F is provided to
illustrate this concept (Gomes Carla P. et al., 2009).

F=(AVB)A(BVC)A(DVE)A(EVE)A(=DVF)A(GVH)A (=G V —H)

OO0
OECEERG
G1 Gz G3

FIGURE 2.2: Constraint graph showing the independent sets of variables
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Calculating the model count of F can be achieved by identifying the disjoint compo-
nents of F, calculating the model count for each component, and then multiplying
the individual results. The identification of components occurs dynamically as the
#DPLL procedure extends a partial assignment, as can be seen in Algorithm 1. With
each new assignment, certain clauses are satisfied, leading to a dynamic simplifica-
tion of the constraint graph, potentially creating new components (Gomes Carla P.
et al., 2009).

Input :A formula F, An empty set of learned clauses G = @
Output: Model count of F

1 function #DPLL (F):
2 | encoding < Encode (F);
3 cached <— Lookup (encoding);
4 if cached # -1 then
5 ‘ return cached;
6 end

7 pick a literal [ in F;

8 X ¢ CountConditioned(F,1);

9 y < CountConditioned(F,—l);
10 | Cachelnsert(encoding, x +y);
11 return x + y;

12 end

13 function CountConditioned(F,1):

14 JF; < BCP (F|));

15 if F; contains empty clause then

16 ‘ return 0;

17 end

18 else if F; contains no clauses then

19 v < number of unassigned variables in F;;
20 return 2°;

21 end

22 else

23 count < 1;

24 C < FindDisjointComponents (F});
25 foreach C; € C do

26 | count < count x #DPLL(C;);

27 end

28 return count;

29 end

30 end

Algorithm 1: Extended #DPLL Algorithm

12
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Input: A formula F, A set of learned clauses §

1 function BCP(F):

changed < true ;

while changed do

U < set of unit literals in F and G;

changed < false;

foreach u € U do

F +— Flu

G+ g‘u;‘

changed <« true;

if F or G contains an empty clause then
conflict-clause < ExtractConflictClause(F, G);
learned <+ AnalyseConflict (F, conflict-clause);
G < G U {learned};
Backjump (F);
break;

end

© 3 S U e W DN

e e O S
N Ul R WN =R O

end

[y
|

end
19 return F;
20 end

[
@

Algorithm 2: Clause Learning And Boolean Constraint Propagation

2.3.7 Component Caching

As the #DPLL-based model counter traverses the search tree, setting variables and
simplifying the formula, it may encounter subformulas that have already appeared
in a previous branch. Recognizing such repetitions and avoiding the need to recom-
pute the model count for these subformulas is highly advantageous (Gomes Carla P.
et al., 2009).

Component caching stores a mapping from a representation of a component (the
key) to the model count of that component (the value). This allows for efficient reuse
of previously computed model counts for subformulas encountered again during
the search.

A component is represented as a set of unsatisfied clauses with falsified literals
removed (Sang et al., 2004). There is a substantial number of components processed
throughout the execution of the search algorithm. The storage of cached entries
poses a significant challenge if outdated entries are never removed from the cache
(Sang et al., 2004).
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Tian Sang et al. demonstrated a concrete example of this issue arises when solving a
randomly generated 3-CNF formula with 75 variables at a clause-to-variable ratio
close to the challenging region of 1.8. In one such instance, the process encountered
over 9 million distinct components (Sang et al., 2004).

2.4 Traditional Component Representation

Components stored in the cache can be stored in the standard scheme (STD) (Thurley,
2006). Components are represented by strings that omit clauses that are satisfied
and literals that have been assigned (Thurley, 2006).

Example 5. Consider the following formula:
F = (X1 VXV X3) N (X1 V —xg V —\X5) A (x6 Vxa V X3) A (x6 V x4 V —|X5)

The corresponding encoding for this formula is provided below.
In this representation, zeros mark the end of each clause (Sang et al., 2004).

Encode(F) = (1,2,3,0,1,—4,-5,0,6,2,3,0,6, —4, —5,0)

On the other hand, in the hybrid encoding scheme (HC), only sound components
are stored. Sound components contain at least two unassigned literals. This re-
striction is justified because clauses with a length of zero, empty clauses, indicate
conflicts and unit clauses are already addressed via unit propagation (Thurley, 2006).

In the HC scheme, the components of a formula are represented using two strings,
denoted as a and b. Specifically, string a contains the indices of the variables included
in the component and string b contains the indices of the clauses that are part of
the component. To reconstruct and determine whether each variable appears in
its positive or negated form, the original formula F is consulted using the indices
stored in a and b (Thurley, 2006).

Example 6. The corresponding encoding of formula F in the HC encoding is provided
below. In this representation, the zero acts as a separator between the two parts a and b.

Encode(F) = (1,2,3,4,5,6,0,1,2,3,4)

In this representation, variable and clause identifiers are used rather than clause
contents. As a result, two components may look identical in the STD format but
differ in the HC format.

Example 7. Take the assignment 0 = {x¢ = T, x1 = F}. Under o the remaining formula
is F; = (x2 V x3) A (—x4 V —x5), which is encoded in HC format as (2,3,4,5,0,1,2).
If instead, the assignment T = {x¢ = F, x1 = T} is used, the reduced formula is still
Fr = (22 V x3) A (—xy4 V —x5), but its HC encoding becomes (2,3,4,5,0,3,4). Thus, the
clause identifiers differ even though the components themselves are the same (Thurley, 2006).

14
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While this approach may occasionally prevent HC from recognizing certain com-
ponents as identical, as opposed to the STD encoding would, the HC encoding
nonetheless leads to a significant reduction in storage to represent a component than
STD, allowing more components to be stored in the cache (Gomes Carla P. et al.,
2009). For example, STD uses 16 symbols to represent the formula F, whereas HC
requires only 11 symbols.

Additionally, the hybrid encoding scheme omitting binary clauses (HCO) excludes all bi-
nary clauses from the original formula due to redundancy (Thurley, 2006). Suppose
the formula F contains a binary clause (x; V x). The binary clause appears in the
component if and only if both literals remain unassigned. Hence, the occurrence
of a clause identifier for this binary clause can be reconstructed directly from the
presence of the individual variables in the component (Thurley, 2006).

If the original formula F contains any binary clauses, its HCO representation would
differ from that of HC.

Example 8. Consider the following formula G:
G=(x1Vx)A(x1V—x5)A(x6VxaVa3)A(x6V —xgV —xXs5)

The HCO encoding for this formula would be (2,3,4,5,6,0,1,2) where the first two binary
clauses are derived rather than explicitly stored. As shown, this approach reduces the size of
the encoding, from (1,2,3,4,5,6,0,1,2,3,4) to (2,3,4,5,6,0,1,2), effectively shortening
it by 3 symbols out of 8.

Each literal in formula § maintains a list of literals with which it forms binary clauses.
In this case, literal x; has a list containing (1), literal —x5 has a list containing (1)
and literal x; has a list containing (2, —5). One might assume that these binary links
would require additional space in the cache, however, they do not need to be stored
in the cache! Instead, these binary links can be stored globally and shared across all
components (Thurley, 2006).

The hybrid encoding scheme omitting binary clauses packed (HCOP) stores each com-
ponent as a compact bitstream rather than as an explicit list of variable and clause
identifiers (Thurley, 2006). The idea is closely related to variable-length encoding in
coding theory. Instead of storing all identifiers explicitly, only the first identifier and
the differences between consecutive identifiers are stored. This is efficient because
variable and clause identifiers within a component are always sorted.

Example 9. Consider again the formula
G=(x1Vx)A(x1V-xs)A(x6Vx2Vax3)A(xeVxgV—xs).
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The variables in the component are (1,2,3,4,5,6) and the clause indices are (1,2,3,4).
Since both sequences are consecutive, all differences equal 1. Thus, the total packed size is 13
bits', which requires one 32-bit block, instead of 10 32-bit blocks in the HCO format.

By storing only small deltas instead of full identifiers, HCOP achieves a substantial
reduction in memory usage per component, allowing significantly more components
to be stored in the cache (Thurley, 2006).

2.5 Symmetric Component Representation

Traditional cache indexing schemes register a cache hit only when there is an exact
match between component representations. However, an important observation is
that many components, although differing in the specific variables they contain, and
therefore in their representations (STD, HC, etc.), are actually structurally identical.

Example 10. Consider two distinct components encountered at different locations within
the search tree.

Cr=(-xVy)A(-yVz)
C, = <—|7’\/S)/\<t\/—\s>

Although these two components have different HCO representations, they are structurally
identical. If the variables are renamed such that z — —r, y — —s and x — —t, then the
second component is obtained. This transformation can be expressed as:

m={zw —r, yr— -5, x — it}

This implies that all possible assignments satisfying C, are identical to those satisfying
71(C1). Consequently, their corresponding solution sets and model counts are equal:

Re, = Ry(e,y and  |Re,| = [Rycp)]

The advantage of symmetric component representation is that it can reuse cached
model counts of structurally identical components (van Bremen et al., 2021).

Definition 6 (Symmetric Components). Two formulas y, and i, are said to be sym-
metric (structurally identical) if there exists a bijection (van Bremen et al., 2021)

7tz lits(yq) — lits(yn)

such that
Ry, = Ryqy,y and VI € lits(pr) : ~7(l) = r(=1).

1

3 bits for the first variable ID and 1 bit for each consecutive variable ID (3 + 1 x 5).
2 bits for the first clause ID and 1 bit for each consecutive clause ID (2 + 1 x 3).

16



2.5. Symmetric Component Representation

Before explaining how to identify structurally identical components, several con-
cepts from graph theory that are useful for recognizing structural symmetries are
introduced.

Definition 7 (Coloured Graph). A coloured graph is a triple G = (V,E, P), where
(V,E) defines an undirected graph, and P = {V;}¥_, is a partition of the vertices into k
distinct colour classes. For any vertex v € V;, colour(v) = i, (van Bremen et al., 2021).

Given two coloured graphs, one might ask whether they are isomorphic.

Definition 8 (Coloured Graph Isomorphism). Given two coloured graphs G =
(Vi,Eq,Py) and H = (Va,Ey, ), G and H are said to be isomorphic if there exists a
bijection ¢ : Vi — V; satisfying the following conditions (van Bremen et al., 2021):

1. Forallv,w € V4, (v,w) € E; <= (¢(v), p(w)) € Ez

2. Forallv € V4, colour(v) = colour(¢(v)).

The core idea is that finding symmetries in a formula can be reduced to the problem
of coloured graph automorphism?. In this approach, each variable is represented by
two vertices, one for the positive literal and one for the negative literal, while each
clause is represented by a single vertex. The clause vertices connect to the literal
vertices if the literals appear in that clause. Clause vertices are assigned a colour and
literal vertices are assigned another colour. Vertices representing opposite literals
are directly connected by an edge to ensure Boolean consistency (Aloul et al., 2002).

Using such graph representation, permutational symmetries can be detected along-
side phase shifts (Aloul et al., 2002).

Example 11. Phase-shift symmetries of the form a <+ —a can be detected. Consider the
formula G = (x1V x2) A (—x1 V x3), a phase shift on x1 gives G’ = (—x1 V x2) A (%1 V x3)
which is structurally identical to the original formula and thus provides the same model
count. A permutational symmetry can be illustrated with swapping x1 <> x and x3 < x4
which gives G" = (x V x1) A (x4 V x3), which is structurally identical to G.

Another simplification allows arbitrary two-literal clauses to be represented by a
single edge directly connecting the two literals, instead of using two edges and a
clause vertex (Aloul et al., 2002).

Going back to graph theory, a closely related problem to graph isomorphism is graph
canonization.

2A graph automorphism is an isomorphism from a graph to itself.
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Definition 9 (Canonical Labelling). Given a graph G, a canonical labelling of G is a
graph Canon(G) such that for any graph H (van Bremen et al., 2021):

H is isomorphic to G <= Canon(G) = Canon(H).

As the name suggests, Canon(G) is essentially a relabelled version of G. Given an
oracle for graph canonization, checking whether two graphs are isomorphic be-
comes straightforward: compute the canonical labelling for each graph and simply
compare the results to see if they are identical.

In short, to detect symmetric components, the formulas C; and C; are first encoded
as graph representations, Gr(C;1) and Gr(C;). Their canonical labellings are then
computed and compared for equality (van Bremen et al., 2021).

The transformation of a formula into a graph, denoted Gr(F), is achieved through
the following steps (Aloul et al., 2002, van Bremen et al., 2021):

1. Add a red node for each non-binary clause C; in F.
2. Add a blue node for each literal [; in F.
3. Add an edge between each literal /; and its negated counterpart ;.
4. Add an edge between literal /; & I; of a binary clause.
5. Add an edge between /; and C; if it occurs in a non-binary clause C;.
Example 12. Consider the formula
F=((xVy)AN(-~yVz)AN(xVyVz)

The following figure represents the graph representation of formula F.

FIGURE 2.3: The graph representation of formula F
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For the oracle that provides canonical labellings of graphs, SYMGANAK (van Bremen
et al., 2021) makes use of existing graph automorphism tools, specifically NAUTY
(McKay and Piperno, 2014). Prior research (Puget, 2005) has demonstrated that,
despite the unresolved theoretical complexity of graph isomorphism, such software
performs very efficiently in practice. Furthermore, applying hashing techniques
to Canon(G(C)) allows for near-constant-time retrieval of isomorphic components
(Kitching and Bacchus, 2007).

2.6 Symmetric Caching

It is important to understand how graphs are represented and how their canonical
forms are obtained, as well as why hashing is necessary for efficient retrieval, as
mentioned in the previous Section.

There are two standard ways to represent an undirected graph G = (V, E): using
adjacency lists or an adjacency matrix. The adjacency-list representation is generally
preferred for sparse graphs, where |E| < |V |?, because it provides a more compact
and memory-efficient representation (Cormen et al., 2022).

In the adjacency-list representation of a graph G = (V, E), there is an array e of |V|
lists, one for each vertex in V. For each vertex u € V, the adjacency list e[u] contains
all vertices v such that (#,v) € E. In other words, e[u] lists all vertices adjacent to u
in G (Cormen et al., 2022). Importantly, the vertices in each adjacency list are not
stored in an arbitrary order !

When constructing a graph, the adjacency list is built starting from the variable with
the smallest index. For each variable, the negative literal is listed first, followed by
the positive literal.

Example 13. Consider the two formulas vy and ¢:

v = (—x1Va2) A(—x2V x3)
¢ = (—x2Vaz)A(x2V—xq)

Even though the clauses in ¢ appear in a different order, the resulting adjacency list of the
graph will be identical to that of «y. This shows that the graph representation is invariant
under clause reordering or literal position changes.

This property also explains why traditional cache indexing schemes can handle
permutational symmetries, as discussed in an earlier section. The key requirement
is simply to maintain a consistent construction order for literals and clauses when
building any kind of representation.
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Example 14. The adjacency list and matrix for both ¢ and -y is shown below.

Adjacency List:
[[xa], [], (23], [=x1], [220a]]

Adjacency Matrix:
X1 X3 X2 X2 X3 X3
-x| 0 0 O 1 0 O
X o 0 0 o0 0 o0
-x| 0 0 0 0 1 0
x2» | 1 0 0 0 0 ©0
-x3/ 0 0 O O 0 O
x3/ 0 0 1 0 0 O

When two components differ by structural symmetries, their raw adjacency lists will
differ. Graph canonization produces a canonical relabelling so that all isomorphic
graphs share the same adjacency-list representation! In other words, computing the
canonical labelling of two graphs is equivalent to finding a common adjacency-list
form for that entire isomorphism class!

However, directly comparing adjacency matrices or lists between components
quickly becomes impractical, especially when dealing with thousands of cached
components. To address this, the canonical labels (i.e., the adjacency lists) are hashed.
If two graphs differ, their hashes will differ as well. If their hashes match, a direct
comparison of their adjacency lists is performed to confirm equivalence.

Algorithm 3 presents the Encode function (as referenced in Algorithm 1).

1 function Encode (¢):

2 graph < Gr(y)

3 | canonical label <— Canon(graph)

4 return hash(canonical label), canonical label

Algorithm 3: Encoding Symmetric Components
Isomorphic component caching inevitably introduces computational overhead dur-
ing the search process. Despite the overhead, the approach proves highly effective
in practice.

To quantify solver performance across benchmarks, van Bremen et al. used the
PAR-2 score (van Bremen et al., 2021). This metric not only captures the runtime on
solved instances but also penalizes unsolved instances, allowing a fair comparison
between solvers. The PAR-2 score is formally defined as follows.
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Definition 10 (PAR-2 Score). The PAR-2 score (Penalized Average Runtime) of a solver
over a set of benchmark instances is defined as

1 N
PAR-2 = N Y ot (2.1)
i=1
where N is the total number of benchmark instances and

/ 2.2)

, ) ti,  ifinstancei is solved within the time limit,
2T, otherwise.

where, t; denotes the runtime of instance i, and T is the imposed time limit.

The results clearly showed that SYMGANAK (van Bremen et al., 2021) outperforms
GANAK on certain combinatorial instances. Although it does not always dominate
across all benchmarks, SYMGANAK achieves higher performance in terms of both the
PAR-2 score and the number of solved instances. This demonstrates that, despite
the overhead introduced by graph-based symmetry detection, the gains in cache
effectiveness and reduced redundant computation can compensate for it.

2.7 Cache Structure

A cache implemented in software differs fundamentally from the hardware caches
used in modern CPUs, even though the underlying principles are quite similar.

Modern processors employ several levels of hardware caches, most notably L1, L2
and L3 to store data close to the CPU and reduce access latency compared to main
memory. Software caches are inspired by the same idea: keeping frequently accessed
data readily available to avoid expensive recomputation or retrieval. However, the
way they are implemented is quite different.

In software, a cache is essentially a list stored in main memory. The kernel allocates
space for this list and as more data is added, it dynamically allocates additional
memory to accommodate it. Since main memory is finite, a true software cache must
enforce a size limit.

Once a list is bounded in size, a replacement policy must be defined to decide which
entries to evict when new data needs to be inserted. Unlike hardware caches, soft-
ware implementations have the luxury of maintaining rich metadata, allowing for
more flexible and sophisticated eviction strategies.

Furthermore, another difference between hardware and software caches lies in how
data is stored and managed. Hardware caches operate on fixed-size cache lines,
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meaning every stored block of data occupies a uniform amount of space. In contrast,
software caches are far more flexible, each entry (key-value pair) can vary greatly in
size, from tiny objects to very large ones.

In summary, a software cache is simply a bounded list of data stored in main
memory, managed by a replacement policy that decides which entries to evict when
new ones are added. The elegant part is that many of the principles and metrics
used to analyse hardware-level cache performance, such as hit rate, miss rate and
latency, can also be applied to software caches.

2.7.1 Hashing And Chaining

The cache used by SYMGANAK is implemented as a hash table. Keys are computed
from canonical labels and each key maps to a cache entry that holds the cached data
for that canonical label.

Because the hash function is not perfect, multiple keys can map to the same bucket.
A common and efficient method to handle collisions is chaining: all elements whose
keys map to the same bucket are stored together in a chain associated with that
bucket (Knuth, 1998).

For performance reasons related to memory locality, SYMGANAK implementation does
not allocate one list per bucket. Instead, all cache entries are allocated in a single con-
tiguous array called the cache and each entry contains a pointer to the next element
in its bucket chain. Figure 2.4 illustrates this layout and Example 15 demonstrates
how a cache lookup traverses such a chain during access.

raphs canonical label hash function hash table cache
grae
A label 1 hash 1 pucket 0 I:l
B label 2 hash 2 bucket 1 |:'
C label 3 hash 3 bucket 2 E : next in
D label 4 hash 4 Bucket I:I LuCket ¢
E label 5 hash 5 bucket 0 \j
—

FIGURE 2.4: Hash table and chaining

As the number of stored entries grows while the number of buckets remains fixed,
chains become longer. To maintain efficient lookup and insertion performance, the
implementation enforces an upper bound amax on the load factor.
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Definition 11. The load factor « of a hash table is defined as
x=n/m

where n denotes the number of stored entries and m denotes the number of buckets in the
cache (Cormen et al., 2022). The load factor measures the average number of entries per
bucket. Larger values of « typically imply longer chains and degraded average lookup
performance.

Whenever a approaches amax, the table is resized and rehashing is performed,
increasing the number of buckets and reducing average chain length (Cormen et al.,
2022).

Example 15. Consider Figure 2.4. Assume the hash table has m = 4 buckets and con-
tains five entries corresponding to graphs A—E. Let the hash encodings computed from the
canonical labels of each graph be:

A=12, B=1, C=2, D=3, E=8

Bucket indices are computed by taking each hash modulo 4. Graphs A and E both map to
bucket 0, forming a chain, while B, C, and D each occupy distinct buckets.

A lookup for graph E first selects bucket 0. The chain is traversed starting from the
first entry (A). The hash encoding of A does not match, so the algorithm follows the
next_bucket_element pointer to E. The hash encoding matches, the canonical labels
are equal, and the cached value is returned. If no matching entry were found before the chain
ended, the lookup would result in a cache miss.

1 function Lookup (component):

2 bucket <— component.hash mod #buckets ;

3 idx < hash_table[bucket] ;

4 while idx > 0 do

5 entry <— cache[idx];

6 if entry.hash_encoding = hash_encoding then

7 if entry.canonical_label = canonical_label then
8 ‘ return entry.model_count ;

9

end
10 end
11 idx < entry.next_bucket_element ;
12 end
13 return —1;

Algorithm 4: Accessing Symmetric Components Cache

Algorithm 4 presents the CacheGet function (as referenced in Algorithm 1). The
explicit comparison of hash encodings inside a bucket is required because bucket
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selection uses a modulo operation. Different hash encodings may therefore map to
the same bucket, making a secondary equality check necessary before performing
the more expensive canonical-label comparison.

2.7.2 Replacement Policy

When the cache becomes full, a decision must be made about which existing entries
to evict in order to make room for new data. The performance of this replacement
policy has a significant impact on overall performance and should be chosen based
on the application. Common strategies include:

¢ First In, First Out (FIFO) evicts the oldest data entry.
¢ Last In, First Out (LIFO) evicts the youngest data entry.

¢ Least Recently Used (LRU) evicts the least recently referenced data entry.

In SYMGANAK, an approximation of FIFO is implemented. It timestamps entries with
a monotonically-increasing sequence number. When the cache needs space, the
implementation computes a global cut-off (median of timestamps) and removes
roughly half of the candidate entries (those older than the cut-off), then rehashes the
hash tables.

2.7.3 Semantic Structure

Inside the cache, there are several semantic relations between components.
The relations shown in Figure 2.5 (father, first_descendant and next_sibling)
implement these parent/child and sibling links across buckets.

Example 16. Let ¢ be a component whose formula decomposes into two disjoint components
¢4 and ¢p (so ¢ is their father). If the model counts are #p, = Ma and #¢pp = Mp, then
the model count of the father is #¢ = #¢pa X #¢pp. In this situation ¢4 and ¢p are siblings
of each other, whichever of them was cached most recently is the first sibling.

These semantic relations are introduced because of a subtle interaction between
component caching and clause learning that can cause the solver to compute a lower
bound rather than the exact model count. The issue and the solution (sibling pruning)
were described in (Sang et al., 2004).

Learned clauses G are entailed by the original formula F. Satisfying assignments
of F correspond one-to-one with those of 7 A G. This is one of the reasons why
components are detected with respect to F only, ignoring G. However, learned
clauses are still used during search for unit propagation and pruning, as can be
seen in Algorithm 2. As a result, the search below a partial assignment ¢ will only
see assignments that satisfy F|, A G|,, and these may form a strict subset of the
satisfying assignments of F|,. This mismatch is the source of the undercount.
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FIGURE 2.5: Semantic relations in the cache

Example 17.

F=(poV-a1Vp1)A(poV-paVa)A(arVaxVaz)
A (mp1 V1) A (=b1 Vb)) A (=ba V —p2)

Q:(pOVa1Va2)

First branch o = {po=0, p1=1, po=0} Second branch o' = {py=1}
A= (mVayVas), Glo=(a1Va) A=(@mVaVa), Glo=T
JAANG|s| =5 AANG|y| =7

Thus the true count of component A is 7, reusing the cached value 5 would undercount
due to learned clauses that falsify. Learned clauses can only falsify if one of the siblings of
component A also falsify! Since learned clauses are entailed from formula F.

This particular undercounting issue can be solved by removing all of its cached sib-
lings and their descendants, as illustrated in Algorithm 5. In short, the relations (e.g.,

first_descendant, next_sibling) can be used in order to remove cache pollution
(Sang et al., 2004).
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1 function CachelInsert (component, model_count):

2 if model_count = 0 then
3 Remove all sibling subtrees of component from cache and hash_table;
4 if component is the last branched component of its parent then
5 Add (component,0) to the cache;
6 AddToHashTable (component);
7 end
8 else
9 ‘ Remove all descendants of component from cache and hash table;
10 end
11 end
12 else
13 Add (component, model _count) to the cache;
14 AddToHashTable (component);
15 end
16 function AddToHashTable (component):
17 bucket < component.hash mod #buckets;
18 old_head < hash_table[bucket];
19 cache[idx].next_bucket_element < old_head;
20 hash_table[bucket] + idx;

Algorithm 5: Insert Model Count In Cache & Remove Cache Pollution

2.8 Branching Decision Strategy

Branching decisions consist of three choices (Sang et al., 2005b):
1. Which component to explore.
2. Which variable inside the chosen component to branch on.

3. Which polarity is the chosen variable.

2.8.1 Component Ordering

At each decision point, the residual formula decomposes into disjoint components.
Each component can be treated almost independently, although learned clauses can
create cross-component interactions (Sang et al., 2005b). If a component is satisfiable,
its child components will also be satisfiable. Therefore, every child must eventually
be explored and cached results can be reused (Sang et al., 2005b). By contrast, an
unsatisfiable component implies that at least one child is unsatisfiable, making work
on other children unnecessary for proving the parent’s unsatisfiability (Sang et al.,
2005b).
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2.8. Branching Decision Strategy

In addition, cached values for satisfiable children need to be removed if an unsat-
isfiable sibling is later discovered. For these reasons, component selection should
favour strategies that reduce wasted effort when unsatisfiable siblings exist (Sang
et al., 2005b).

Predicting which child is unsatisfiable without exploration is difficult, so heuristics
are used. Sang et al. initially tried selecting the component with the largest clause-
to-variable ratio, but this proved ineffective. A more practical approach is to select
the component with the fewest variables first. Smaller components are cheaper
to analyse, and abandoning their work because of an unsatisfiable sibling limits
wasted computation (Sang et al., 2005b).

2.8.2 Variable Branching Heuristic

The second decision is choosing the variable to branch on. Variable-branching heuris-
tics are crucial to the performance of DPLL-based #SAT solvers. GANAK and SYMGANAK
can both use the Cache State and Variable State Aware Decaying Sum (CSVSADS)
heuristic (Sharma et al., 2019). To understand CSVSADS, it helps to first look at the
heuristics that inspired it.

Literal-count heuristics

Literal-count heuristics (Silva, 1999) choose branching variables by counting how
often each variable appears as a positive literal C, and as a negative literal C; in the
current component, then scoring variables either by the combined count C, + C;; or
by the larger of the two counts max(Cp + C;). The combined approach, known as
Dynamic Largest Combined Sum (DLCS), picks the variable with the highest C, + C,,
and sets it true when C, > C,, and false otherwise. The alternative, Dynamic Largest
Individual Sum (DLIS), selects the variable whose single polarity appears most often
and similarly sets its value according to whether C,, > C,.. Both are dynamic because
the counts are updated during search, and both aim simply to eliminate as many
clauses as possible at each decision without explicitly accounting for the effects of
unit propagation (Sang et al., 2005b).

Variable State Independent Decaying Sum

VSIDS heuristic (Moskewicz et al., 2001) scores each literal and updates those scores
only when new learned conflict clauses are added. Each literal in a newly added
learned clause has its counter incremented. It periodically divides all counters by
a constant factor. The solver picks the unassigned literal with the highest counter
with breaking ties randomly. After many decay steps the scores mainly reflect recent
conflict clauses (Sang et al., 2005b). The polarity is then chosen using a DLCS-style
rule. If the positive literal occurs at least as often as the negative literal in the current
formula (C, > C,), the variable is assigned true, otherwise false (Sang et al.,
2005b).
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Variable State Aware Decaying Sum

VSADS heuristic (Sang et al., 2005b) bridges the gap between the conflict-driven
focus of VSIDS and the formula-aware greediness of DLCS. The VSADS score is
calculated as a weighted sum:

score(VSADS, v) = p - score(VSIDS, v) + q - score(DLCS, v) (2.3)

where p and g are constant factors and v an unassigned variable. This allows the
solver to behave like VSIDS during conflict-heavy phases and like DLCS when the
search is smoother. Once a variable is selected by this combined score, the solver
applies the same polarity rule as in DCLS: if the positive literal’s occurrence count
satisfies Cp = Cy, the decision is true, otherwise false (Sang et al., 2005b).

Cache State and Variable State Aware Decaying Sum

The CSVSADS heuristic (Sharma et al., 2019) extends VSADS by incorporating
component-cache awareness to improve cache hit rates. CSVSADS discourages
branching on variables whose components were recently added to the cache (Sharma
et al., 2019). It introduces two guiding parameters: a cache score which prioritizes
variables whose components were not recently cached and a hyperparameter 7,
which determines the top percentage of variables by VSADS score to consider.
The third step selects among candidates the variable with the highest cache score
(Sharma et al., 2019).

VSADSax = max{score(VSADS, v) | v € unassigned variables}  (2.4)

The cache score (CS) itself is maintained dynamically. Whenever a cache hit or
cache store occurs, the cache score of all variables appearing in that component is
decremented (Sharma et al., 2019). Periodic increments are applied to all variable
scores by multiplying them by a constant decay factor. This mechanism ensures that
variables whose components are already cached receive lower priority, effectively
discouraging future branching on them and improving overall cache utilization
(Sharma et al., 2019).

score(CS,v), ifscore(VSADS,v) > r-VSADSax

) (2.5)
, otherwise

— 00

score(CSVSADS,v) = {

After selecting a variable, polarity is also determined by comparing occurrence
counts. However, CSVSADS introduces randomization to weaken this choice when
the preference is not strong. The GANAK and SYMGANAK solvers maintain a polarity
cache, similar to (Pipatsrisawat and Darwiche, 2007), recording previously assigned
polarities. For a variable v that appears in this cache, if neither polarity dominates
(i.e., neither exceeds the other by a factor of two), the solver randomly selects from
{DLCSpolarity, true, false}. Otherwise, the standard DLCS polarity is used, posi-
tive when C, > C,, negative otherwise (Sharma et al., 2019).

28



2.8. Branching Decision Strategy

Isomorphic Cache State and Variable State Aware Decaying Sum

ICSVSADS (van Bremen et al., 2021) is motivated by CSVSADS but is also symmetry-
aware. When a cache hit occurs, decrement the scores of all variables in that
component and also decrement the scores of variables that have previously formed
a symmetric component (van Bremen et al., 2021). For example, if (x V y V z) yields
a cache hit and a symmetric component (a VV =b V c¢) was seen earlier, decrement
the scores for x,y,z and for a, b, ¢, otherwise the heuristic follows CSVSADS (van
Bremen et al., 2021).

2.8.3 Improved DFS

The algorithm explores the component tree using depth-first search (DFS) (Sang
et al., 2005b). A third optimization to accelerate the detection of unsatisfiable com-
ponents involves a modification to this DFS traversal (Sang et al., 2005b).

In the baseline DFS approach, the solver fully explores a child component before
moving to the next sibling. This strategy can waste significant effort if a later sibling
turns out to be unsatisfiable, because earlier children may be completely analysed
before the decisive unsatisfiable child is discovered (Sang et al., 2005b).

The improved approach employs a lightweight exploration strategy. Rather than
fully completing one child before starting the next, the solver begins exploring a
child and, once the first satisfying assignment for that child is found, temporarily
pauses further deep exploration and moves to the next sibling (Sang et al., 2005b).
This light exploration continues until either a child is found unsatisfiable or all chil-
dren are proved satisfiable (Sang et al., 2005b). If an unsatisfiable child is discovered,
the parent is immediately known to be unsatisfiable and search can backtrack. If
all children are found satisfiable, their explorations are completed (Sang et al., 2005b).

This improved DFS strategy reduces the risk of expending substantial effort on a

child that will later be rendered irrelevant by an unsatisfiable sibling (Sang et al.,
2005b).
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Chapter 3

Problem Statement

In the Chapter 2, it was shown that any given component can be represented as a
graph and that structurally identical components correspond to isomorphic graphs.
By differentiating between non-structurally identical components encountered dur-
ing the search process, redundancy is minimized, preventing the recalculation of
model counts already stored in the cache.

It was argued that the overhead of computing the symmetrical scheme was justified
on certain combinatorial instances. It does pay off to reduce the search space by
incurring additional computational overhead. In Chapter 4, this overhead will be
examined on certain problem instances.

Additionally, the symmetrical scheme leverages the canonical labelling of graphs
to detect isomorphic graphs, identifying components that are structurally identical.
Given that the canonical label effectively represents the adjacency list of a graph,
it follows logically that storing adjacency lists for every cached component incurs
significantly greater space overhead compared to traditional schemas. In Chapter 4,
this overhead will be quantified in greater detail.

As such, a critical challenge arises: computing the symmetrical scheme is compu-
tationally intensive and demands significantly more cache space than traditional
approaches. This raises the following question: is it feasible to maintain the bene-
fits of the symmetrical scheme while simultaneously reducing its computational
overhead and optimizing space utilization, thereby enhancing the solver’s overall
cache efficiency and thus performance ?

One way to mitigate unnecessary computations of the symmetrical scheme involves
adding an additional level of indirection, i.e. implementing a multi-layer cache. As
previously outlined in Chapter 2, components are cached through a mapping that
associates a representation of the component with their respective model counts. If a
component is cached but never retrieved again, calculating its symmetrical scheme
became an inefficient use of resources. The effort is justified only when a stored
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component is later found to be structurally identical to another, allowing the reuse
of its precomputed model count.

The higher-level cache refrains from computing the symmetrical scheme and instead
computes another encoding that is cheap but generalizes more than traditional
representations. Components are only stored in the lower-level cache with their
symmetrical scheme representation after a hit has occurred in the higher level cache.
This mechanism tries to ensure that the symmetrical scheme is only computed for
components that are more likely to be accessed in the future. Although a single hit
does not guarantee repeated future access !

The introduction of a multi-layer cache system leads to several interesting research
questions:

¢ RQ1: Which key representation for the higher-level cache should be used to
maximize cache hit rate and minimizes average memory access time across a
benchmark ?

e RQ2: How does a multi-level cache architecture (2, 3 levels) affect solver
performance measured by PAR-2 score, compared to a single-level cache,
across a benchmark?

* RQ3: How does a compact bitstream encoding of the symmetrical scheme
affect the PAR-2 score and the number of components cached ?
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Chapter 4

Approach

This chapter investigates the computational and memory overhead of different
encoding schemes and presents different methods to reduce these overheads. In
Section 4.1, the time and space overhead of the symmetrical scheme (SS) and the
hybrid packing scheme (HCOP) is discussed. In Section 4.2, a 2-layer cache is
introduced to reduce these overheads, followed by a discussion on a 3-layer cache
in Section 4.3. Finally, the chapter explores graph quantization techniques in Section
4.4 to minimize the space overhead of the SS scheme.

4.1 Premises

41.1 Time Overhead

The symmetrical encoding is computationally expensive, as argued in previous
chapters. Specifically, converting each component encountered in the search tree
into a graph, then into a canonical label and finally into a hash takes time. In other
words, cache access time is slower when using the symmetrical scheme.

To illustrate this overhead, the average cache access time is measured and compared
across two solvers on five problem instances. The solvers are identical except for the
encoding schemes they use, which are the symmetrical scheme and hybrid packing
scheme.

TABLE 4.1: Average cache access time per problem and encoding type

Problem SS (us) HCOP (us)
apexd 2517.22 1.62
count15-3 1021.44 3.62
fpgal0_8_sat_rcr 326.54 3.64
count21-3 126513.66 5.61
50-12-3-q 1039.14 2.26
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As shown in Table 4.1, accessing the cache takes significantly longer on average
when using the symmetrical scheme. This overhead occurs consistently, regardless
of the problem instance being solved. The table highlights that the hybrid packing
scheme yields consistently low and stable cache access latencies, single-digit mi-
croseconds, whereas the symmetrical scheme incurs substantially higher and much
more variable latencies.

These numbers indicate that the cost of canonicalisation dominate cache-access
time and depends heavily on components encountered during search. By contrast,
HCOP delivers low, predictable access times. Practically, this means that if the solver
performs many cache lookups, SS’s extreme latencies will be most pronounced on
instances that generate large canonical labels.

In Figure 4.1, the latency of each cache access is measured and recorded in a his-
togram for both solvers. The histograms from the five problem instances are then
superimposed to produce the figure. The difference is striking, the symmetrical
scheme has a lot of outliers that contribute to the higher average cache access laten-
cies in Table 4.1.
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FIGURE 4.1: Histogram of cache access time across the five problem instances.

The previous results establish that cache access is indeed slow when using the SS
scheme. It is therefore important to quantify how much of the total computation
time is spent on cache operations. Table 4.2 reports the proportion of total solver
runtime devoted to cache access. In some instances, this proportion is surprisingly
high, reaching nearly 90% of the total execution time.
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TABLE 4.2: Total time spent constructing the encoding and accessing the cache
(TO = timed out).

Problem SS (%) Timegg (s) HCOP (%) Timegcop (s)
apexb 99.08 135.14 1.66 32.35
count15-3 89.86 3.48 0.05 681.47
fpgal0_8_satrcr  34.78 248.91 0.23 TO
count21-3 95.40 94.75 0.04 TO
50-12-3-q 97.07 376.44 5.71 TO

4.1.2 Space Overhead

The previous chapter established that the symmetrical scheme requires significantly
more memory. Specifically, the amount of space required per component is higher
under the symmetrical scheme. To illustrate this space overhead, the average mem-
ory usage per component is measured and compared between the two solvers across
five problem instances.

TABLE 4.3: Size per component (mean =+ std in bytes) and number of components

SS HCOP
Problem Mean Std #Comp Mean Std #Comp
apexb 21400 26309 3431 235 40 4248290
count15-3 143064 146983 397 215 25 285794
fpgal(O-8-sat-rcr 6069 2786 243 212 9 492878
count21-3 943126 904183 959 218 28 1197842
50-12-3-q 23718 8145 4875 405 27 4620022

Table 4.3 reveals a dramatic disparity in per-component footprint and in the number
of stored components. For every instance, the mean SS component size exceeds the
mean HCOP component size by factors ranging from about 29 to 4,326. Also, the
standard deviations for SS are extremely large in several cases (notably count21-3),
indicating heavy-tailed size distributions driven by a few very large canonical labels.

Figure 4.2 shows the per-component size distributions for the five problem instances
and confirms the heavy-tailed nature of the SS scheme. Practically, this means SS
tends to store far fewer but much larger entries, while HCOP stores huge quantities
of compact entries. These observations motivate multi-layer caching and the graph-
quantization strategies described in Sections 4.2-4.4. Reducing the SS footprint or
avoiding full SS representations unless necessary can reclaim effective cache capacity.
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FIGURE 4.2: Histogram of per component cache size across the problem instances

4.1.3 Performance

Despite its computational and memory overhead, the symmetrical scheme (SS)
can still yield performance benefits. Figure 4.3 shows a cactus plot comparing
two solvers on a large benchmark suite. GANAK uses the HCOP scheme, whereas
SYMGANAK uses the symmetrical scheme.
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FIGURE 4.3: Cactus plot comparing the performance of different solvers.
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The methodology for generating this plot is as follows: each problem p; is solved
by both solvers, and the solving time ¢; is recorded (up to a time limit T). The
solving times t; are sorted in increasing order, with timeouts excluded. The points
(t1,1),(t2,2),..., (t;, k) are then plotted, where each point represents the k-th solved
instance. Note that the same set of problems is not necessarily solved by both solvers.
Therefore, the plots may include different subsets of instances (Brain et al., 2017).

From Figure 4.3, with a time budget of 3600 seconds, the solver using HCOP solves
99 problems, while the solver using SS (SYMGANAK) manages to solve about 129. This
trend aligns closely with the results reported by van Bremen et al. (van Bremen et al.,
2021). Remarkably, even with a much smaller time budget of around 100 seconds,
the SS solver already outperforms the HCOP solver, demonstrating its efficiency on
certain problem instances.

4.2 2-Layer Caching

As discussed in chapter 3, both time and space overhead can be improved by intro-
ducing an additional level of indirection. Up to this point, only a single cache was
used, which will be referred to as the L3 cache. The role of the L3 cache is to store
components encoded in the symmetrical scheme together with their corresponding
model counts.

Input :A formula F, An empty set of learned clauses G = @
Output: Model count of F

1 Function #DPLL (F)

2 encoding <— EncodeL2(F) ;

3 model_count <— LookupL2 (encoding);
4 if model_count # -1 then

5 ‘ return model_count;

6 end

7 pick a literal [ in F;

8 X ¢ CountConditioned (F,1);

9 y < CountConditioned (F, —I);

10 CacheInsert (encoding, x + y);

11 return x +y;

Algorithm 6: #DPLL algorithm with L2 / L3 caches

In the new ISYMGANAK solver, a higher-level L2 cache is introduced which is accessed
before L3. Algorithm 6 shows the updated #DPLL algorithm that uses this cache.
Before explaining the encoding used in the L2 cache, the following definition is
required.
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Definition 12 (Graph Invariant). A graph invariant is a function or property f(G) of
a graph G such that for any two isomorphic graphs Gi and G,

f(G1) = f(G2)

In other words, graph invariants are preserved under graph isomorphism (Diestel, 2025).

Remark. Graph isomorphism is simply a relabelling of vertices. When two graphs are
identical up to vertex names, they are isomorphic and their structural properties are preserved.
This can also be shown for a property using definition 6. For example, there exists no bijection
between two components that differ in their number of literals. Similarly, by definition 8,
there can be no bijection between two graphs that differ in their number of nodes.

Trivially, if two graphs differ in the number of vertices, they cannot be isomorphic.
If the number of vertices do equal, no definitive conclusion can be drawn. Such
properties that are cheap to compute are effective filters that allow the solver to
reject many non structural identical components without performing expensive
canonization!

The encoding used for L2 therefore combines a lightweight structural encoding such
as HCO with a graph invariant. L2 lookups, as illustrated in Algorithm 7, first use
the invariant-based hash to retrieve a small bucket of candidate entries from the
L2 hash table. Only when an L2 candidate’s invariant matches, is canonicalization
triggered and the candidate is moved to L3 to perform the definitive check. After
canonicalization the HCO encoding is removed but the graph invariant is kept. This
design lets, components that are in L2, to still compare against entries in L3 that are
transformed.

It is important to emphasise that components are stored exactly once in the cache,
which is a single, contiguous array. The L2 and L3 hash tables only hold indices into
that array. A bucket is formed by looking into the L2 hash table and retrieving the
index of the first cache entry in that bucket’s chain, and each cache entry maintains
anext_12_bucket_element index linking it to the next entry in the same L2 bucket.
The L3 hash table is structured analogously, using next_13_bucket_element index
to form bucket chains.

The two hash tables differ in what representations they index. Entries reachable from
the L2 hash table may correspond either to components stored in their HCO encod-
ing with a graph invariant or to components that have already been transformed
into the symmetrical scheme while still retaining their invariant. In contrast, entries
reachable from the L3 hash table always correspond to components in the symmet-
rical scheme together with an invariant. Because both hash tables index the same
underlying cache array, a single cache entry may simultaneously participate in an
L2 bucket chain and an L3 bucket chain.
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1 function LookupL2 (component):

2 bucket <— component.12_hash mod #12_buckets;
3 idx < 12_hash_table[bucket];

4 while idx # -1 do

5 entry <— cache[idx];

6 if entry.12_hash = component.I12_hash and

7 entry.invariant = component.invariant then
8 ComputeCanonicalLabel (component);

9 MoveEntryToL3 (entry);

10 model_count <— LookupL3 (component);
11 if model_count # -1 then

12 ‘ return model_count;

13 end
14 end
15 idx <— entry.next_12_bucket_element;
16 end
17 return —1;

Algorithm 7: Lookup a component model count in L2

Figure 4.4 illustrates the new cache structure. The fast L2 cache, which filters can-
didates using inexpensive features and the slower but definitive L3 cache. The
following paragraphs walk through the three characteristic outcomes that can occur
during a lookup so the reader can form a concrete mental model.

Case 1: equal invariants, equal canonical labels.

Consider the two components ‘H and K from Figure 4.4. Component [ is already
present in the cache and the solver encounters component H in the search tree. As
in Algorithm 6, the solver computes the L2 encoding of H. The L2 encoding is the
combination of the lightweight HCO scheme and the graph invariant. A hash of the
graph invariant is also computed to index the L2 hash table and to do fast invariant
comparisons.

It turns out that H’s bucket contains K as a candidate. The lookup inspects K’s
stored invariant and compares it to the invariant of H. If the two invariant values
are equal, the lookup proceeds to the definitive stage. Per Algorithm 7, both the
query component and the candidate are put through canonicalisation. The entry
has already undergone canonicalisation and is also part of the L3 hash table, so in
this case only H needs to be canonicalized as denoted in Algorithm 8.

The next step is to inspect the L3 cache as shown in function LookupL3 in Algorithm
10. Based on the hash value of the canonical label of component H, its bucket starts
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FIGURE 4.4: Two-layer hash table and chaining.

with index 0 in the cache. In that bucket, the components .4, K and D are present.
The canonical labels of A and H do not match, so the next entry in the chain is
considered. It turns out that the canonical label of H matches that of K. An isomor-
phism is found and the algorithm returns the model count stored with the existing
cache entry of K. No new canonical entry is created, and no further work is required.

Case 2: equal invariants, different canonical labels.

If the L2 invariant values are equal but the canonical labels differ, the lookup has
performed the heavier canonicalisation work but found that that the components are
not isomorphic. The algorithm therefore continues scanning the remaining entries
in the L2 bucket chain looking for another candidate whose invariant matches. It
turns out 7 is also in this bucket. If no candidate in that bucket yields an invariant
match, the queried component may be inserted into the L2 and L3 tables. Keep in
mind that H is already canonicalized, that’s why it also needs to be in the L3 hash
table, as shown in Algorithm 9. In this case, future queries sharing its canonical
form will hit directly in L3 or if future queries sharing its invariant will hit directly
in L2.

Case 3: different invariants.

Consider the component J from Figure 4.4. The solver computes the L2 encoding
of J, which includes the HCO encoding and the graph invariant. The hash of the
invariant is used to index the L2 hash table. However, the bucket selected based on
this hash does not contain any candidate components (with matching invariants).
Since the invariants do not match, the solver does not proceed to the canonicaliza-
tion step. The solver then computes the model count for 7 and inserts it into only
in L2 cache for future lookups.
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1 function ComputeCanonicalLabel (component):

2 if not component.has_canonical then

3 component.canonical <— CanonicalLabel (component.encoding);
4 component.13_hash < Hash(component.canonical);

5 component.has_canonical < true;

6 end

7 function MoveEntryToL3 (entry):

8 if not entry.has_canonical then

9 entry.canonical <— CanonicalLabel (entry.encoding);
10 entry.l3_hash < Hash(entry.canonical);
11 entry.has_canonical < true;
12 InsertEntryIntoL3(entry);
13 end

14 function InsertEntryIntoL3(entry):
15 | bucket < entry.l3_hash mod #13_buckets;
16 old_head < 13_hash _table[bucket];
17 | entrynext13_bucket_element < old_head;
18 13_hash_table[bucket] <— entry_idx;

Algorithm 8: Move cache entry from L2 to L3

As for which graph invariant to choose, there are many choices. Simple invariants
include the number of vertices, number of edges and the sorted degree sequence.
Slightly stronger but still inexpensive invariants include the multiset of average
neighbour degrees. More computationally expensive yet more discriminative invari-
ants include spectral signatures.

Choosing which invariants to use is a trade-off between computation cost and dis-
criminative power: cheap invariants keep L2 queries fast but increase the workload
of L3 since more false positives will occur, while stronger invariants slow down L2
slightly but reduce how often L3 must be invoked since we have less false positives.
In certain cases, computing canonical labels is even cheaper than computing graph
invariants, especially for small graphs.

4.3 3-Layer Caching

Some invariants are strong discriminators but too expensive to compute on every
lookup. Others are cheap to compute but weak discriminators. Combining multiple
invariant levels can improve the trade-off between lookup cost and discriminative
power. A very cheap test (L1) quickly rejects the majority of non-matching can-
didates, a moderately expensive test (L2) filters the remaining candidates before
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1 function CachelInsert (component, model_count):

if model_count = 0 then
Remove all sibling subtrees of component from cache and hash_table;
if component is the last branched component of its parent then
Add (component,0) to the cache;
AddToHashTables (component);
end
else
‘ Remove all descendants of component from cache and hash table;
end
end
else
Add (component, model _count) to the cache;
AddToHashTables (component);
end
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16 function AddToHashTables (component):

17 bucket <— component.12_hash mod #L2_buckets;
18 old_head < 12_hash_table[bucket];

19 cache[idx].next_12_bucket_element < old_head;
20 12_hash_table[bucket] + idx;

21 if entry.has_canonical then

22 bucket <— component.13_hash mod #L3_buckets;
23 old_head < 13_hash_table[bucket];

24 cache[idx].next_13_bucket_element < old_head;
25 13_hash_table[bucket] < idx;

26 end

Algorithm 9: Insert Model Count In Cache & L2 / L3 Hash Tables

invoking the definitive canonical check in L3. Figure 4.5 illustrates a three-layer
cache that implements this idea. It uses the same principles as in the two-layer case
in Section 4.2.

L1 stores components in the HCO scheme with a very cheap invariant. L2 stores
components in the same HCO scheme together with a stronger property. L3 stores
components in the symmetrical scheme. Because all hash tables index the same
cache array, a single cache entry may participate simultaneously in L1, L2 and L3
bucket chains.

Algorithm 11 drives the multi-layer lookup. Given a query component, the routine
computes an L1 encoding and uses the hash computed from the L1 invariant to
select an L1 bucket. Each candidate entry in that bucket is compared against the
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4.3. 3-Layer Caching

function LookupL3 (component):

bucket <— component.13_hash mod #13_buckets;

idx < 13_hash_table[bucket];

while idx # -1 do

entry <— cache[idx];

if component.13_hash = entry.13_hash and

component.canonical = entry.canonical then

‘ return entry.model_count;

end

idx < entry.next_13_bucket_element;

end

return —1;
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Algorithm 10: Lookup a component model count in L3

query using the cheap L1 invariant. If an L1 candidate matches, the L2 property
is also computed for the query component and ensures that the cache entry also
has an L2 property. If not, the cache entry is moved to L2 by inserting it into the L2
hash table and computing the L2 property. After these steps the lookup descends to
LookupL2 and follows the same overall pattern as in the two-layer case.

gmplns canonical label hash function L3 hash table cache
(0] s RS
A label 1 baglh 7 bucket O l:l
1 i onext L3
B label 2 hash 2 bucket 0 ':' bucket
2 é
slow invariants hash function L2 hash toble -*Z-I ~~~~~~~ :
D
c inv 1 hash 1 bucket O E :
]
D v 2 hash 2 bucket 0 :
5 ¢ next L2
l:l © bucket
fast invariants hash function (1 hash table 6|:|. ..........

M inv 1 hash 1 bucket 0 ?
Ll |
taw 9 hagh 2 bucket 0 l:l

FIGURE 4.5: Three-layer hash table and chaining.
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Input :A formula 7, An empty set of learned clauses G = @

Output:Model count of F
1 Function #DPLL (F)
encoding <— EncodeL1(F);
model_count <— LookupL1 (encoding) ;
if model_count # -1 then

| return model_count;

end
pick a literal [ in F;
X < CountConditioned (F,I);
y < CountConditioned (F, —l);
CacheInsert (encoding, x + y);
return x +y;
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12 Function LookupL1 (component)

13 | bucket <— component.l1_hash mod #11_buckets;
14 idx < 11_hash_table[bucket];

15 while idx # -1 do

16 entry < cache[idx];

17 if entry.l1_hash = component.l1_hash and entry.l1_invariant =
component.l1_invariant then

18 ComputeL2Property (component);

19 MoveEntryToL2 (entry);

20 model_count < LookupL2 (component);

21 if model_count # -1 then

22 | return model_count;

23 end

24 end

25 idx < entry.next_11_bucket_element;

26 end

27 return —1;

Algorithm 11: #DPLL algorithm with L1 / L2 / L3 caches

4.4 Graph Quantization

At the beginning of Chapter 4, the space overhead was discussed. The cache space
consumed per component by each encoding scheme was reported in Table 4.3. The
symmetric encoding requires substantially more space than the alternative schemes.
When a multi-layer cache is used, the average space occupied by a component
decreases. This effect is demonstrated below and will be examined in greater detail
in Chapter 8.

Table 4.4 reports the mean component size in bytes and the number of components
for each problem instance. Components encoded with the symmetric scheme, i.e.
components stored in the L3 cache exhibit a substantially larger mean than compo-
nents stored in the L2 cache (HCO + property).
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4.4. Graph Quantization

TABLE 4.4: space per component (mean =+ std in bytes)

L3 (SS) L2 (HCO + property)
Problem Mean Std #Comp Mean Std #Comp
apex5 12952 18913 689 7473 8028 2742
count15-3 21102 35710 30 4482 2903 367
fpgal(O-8-sat-rcr 6455 3312 119 2321 706 124
count21-3 173483 351919 31 928 12885 8228
50-12-3-q 30338 12787 2176 2426 9934 2699

In some cases, the mean component sizes in L3 are 2 to 5 times larger than the
corresponding means in L2. In one instance the difference exceeds two orders of
magnitude. The data also shows that HCO is considerably less space-efficient than
HCOP (see Table 4.3), while SS occupies markedly less space than the values listed
in Table 4.3, reducing the per-component footprint using a multi-layer cache.

Figure 4.6 also illustrates that components in L3 require less space per component
across the problem instances. The figure also highlights a substantial reduction in
aggregate L3 space usage, however, L3 still contains occasional very large compo-
nents that occupy far more space than typical L2 components.

The dataset used for this initial demonstration is small. Certain problem instances
may contain many highly similar graphs, which would populate L3 more rapidly
and change the observed distributions. In such cases it may be instructive to investi-
gate how reductions in L3 component footprint affect overall performance on larger
or more diverse datasets.

Each component stored in L3 uses the symmetric encoding and must store its
canonical label, i.e. a graph adjacency list. The approach proposed here to compactly
represent the canonical label is analogous to the hybrid packing scheme (HCOP),
which compactly encodes a formula using fewer bits. The proposed variant is
referred to as the Symmetrical Packing Scheme (SPS).

4.4.1 Theoretical Bounds

First, note that decompression of the packed canonical label is unnecessary. It is
not required for an isomorphism check, nor is any information extracted from the
canonical label. The focus, therefore, is on lightweight packing schemes that reduce
the per-component footprint enough to increase effective cache capacity while pre-
serving fast access and comparison operations.

Secondly, in information-theoretic terms, the question is whether a lower bound
exists on the number of bits required to represent a graph with n vertices and m

edges without loss of information. The answer involves the concept of Kolmogorov
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FIGURE 4.6: Memory footprint per cached component.

complexity. Kolmogorov complexity (Cover and Thomas, 2005) defines the absolute
minimal description length but is uncomputable in general. Consequently, no algo-
rithm can be guaranteed to achieve the Kolmogorov-optimal length for every input

graph.

Empirical evaluation is required to quantify the trade-off: a comparison showing
memory footprint, encoding time and impact on end-to-end solver runtime for
representative cache sizes (e.g. 2 GB and 4 GB) would be particularly informative,
such an evaluation would be presented in Chapter 8.

4.4.2 Quantization

Consider the following formula F:

F =(x1Vx2Va3)
A (x3V x4V x5)
A (—x1 V —2xp V —xs Vo —xg V X))

The graph representation of this formula is visualized in Figure 4.7. This graph
has 13 vertices and is represented as a NAUTY sparse graph in SYMGANAK, which uses
the adjacency-list representation described in Chapter 2. An adjacency list must be
constructed for each of the 13 vertices where vertex identifiers and neighbouring
vertex identifiers are represented as integers. On most commonly used systems,
integers require 32 bits or 4 bytes.

The amount of bytes needed to represent a simple adjacency-list layout can be
expressed as the sum of the neighbour array and an index (or offset) array that
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4.4. Graph Quantization
o X/\@
K

FIGURE 4.7: Graph representation of the CNF formula F.

indicates the start position of each vertex’s neighbour list in the neighbour array. For
an undirected graph with n vertices and m edges, the neighbour array length equals
2m (each edge contributes two entries). The index array typically has n entries. If
32-bit integers are used, the total byte requirement becomes

Bytes = 4-(2m+n) = 4(2m+n). (4.1)
Applying this to the example (n = 13, m = 16) yields

Bytes = 4(2-16+13) = 4-45 = 180 bytes.

Alternative representations can be far more compact. For example, the graph6 for-
mat (an ASCII encoding used by NAUTY) packs the upper-triangle adjacency matrix
into printable characters. A detailed description of the graph6é encoding scheme
is provided in Appendix B. The equivalent graph representation of formula F in
graph6 formatis L 7G?C?7Ig?iig, which occupies 16 bytes in memory. The ASCII-
based encoding benefits from readability and portability, but it carries the overhead
of representing packed bits as printable characters.

By contrast, a bit-level encoding that stores the adjacency matrix or the packed
upper-triangle directly as a sequence of bits removes the ASCII-character overhead.
Using such a packed bit representation for the same graph can reduce the footprint
further. For example, a carefully constructed bit-packed representation requires only
9 bytes instead of 16! In the following section, the symmetrical packing scheme will
be explained.
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FIGURE 4.8: Adjacency matrix of a graph representation of a formula. Blue numbers
in the upper-right corner of each relevant cell denote the index assigned to that
position in the strict upper triangle.

4.4.3 Symmetrical Packing Scheme

Given an undirected simple graph with n vertices and m edges and assume the ver-
tices are numbered 0, 1, ...,1n — 1. Map each undirected edge (i,j) with0 <i < j<n
to a unique integer index in {0, ..., (3) — 1} by enumerating the strict upper triangle
of the adjacency matrix in lexicographic row-major order, as illustrated in Figure 4.8.

The resulting list of indices of the edges is sorted in increasing order and then delta-
encoded by storing the first index in full and representing each subsequent index as
the difference from its predecessor. Fixed bit-widths are chosen for the full index
and for the deltas. All fields are concatenated and packed into a single bitstream
together with a compact header that records the required metadata.

A convenient bijection idx : (7,]) — k for 0 < i < j < n enumerates the strict upper
triangle in lexicographic row-major order:

0,1),(0,2),..., (0,1 —1),(1,2),...,(L,n—1),(2,3),...
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4.4. Graph Quantization

The closed form for the index of pair (i, ) is

idx (i, j;n) = E(n—l—t) n (j_i_1):i(2”—2i—1)

t=0

+(j—i—1). 4.2)
Write the sorted indices as
n
ag < ayp < -+ <dpy_1, atE{O,...,<2>—1},

and define deltas by
do := do, Spi=ap—apq (£>1). 4.3)
Let B := (3). Choose bit-widths
b:= |log, B] +1 (4.4)
Amax = maxdy,  d:= [log; Amax] +1. (4.5)
With these definitions the packed data bit-length equals
data bits = b+ (m —1)d. (4.6)

The stored bitstream begins with a compact header that encodes the necessary
metadata which includes m, n and the chosen bit-widths b and d. Followed by the
first full index ag stored in b bits and then by the sequence of m — 1 delta values
41,...,0m—1, each encoded using d bits. The concatenated bitstream is laid out into
fixed-size blocks of width W bits (typically W = 32 or 64).

If deltas are small relative to B, i.e. d < b, storing the first index once together with
m — 1 small deltas requires fewer bits than storing m full indices. Consequently, the
delta-encoded, bit-packed representation can be significantly more compact than
storing each index in full.

Example 18. Consider once again formula F:
F=(x1VxaVx3)A(x3VxgVxs)A(—xgV-oxyV-oxgV-oxgVoxs)
The vertices of the graph representation, as illustrated in Figure 4.7, are numbered as follows:
-x1, X1, ..., 7x5, x5 — 0,1,2,3,4,5,6,7,8,9  C1,C,C3 — 10,11,12.

Assume this numbered graph is the canonical graph whose adjacency matrix is shown in
Figure 4.8. In the figure, ones indicate edges and zeros are omitted for readability, block
indices are highlighted in blue. The adjacency-matrix representation is used for encoding
because each edge can be represented by a single integer index, whereas an adjacency-list
representation typically requires two integers per vertex.
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For this graph the total number of unordered vertex pairsis B = (123 ) = 78. Using Equation
(4.2) with n = 13 yields a sorted list of edge indices (upper-triangular indexing). The
indices that correspond to edges are

[0, 11, 20, 23, 32, 39, 42, 49, 54, 55, 57, 62, 66, 68, 71, 73],

which contains m = 16 entries and therefore produces m — 1 = 15 successive differences.
The deltas 6y = ay — a;_1 for t > 1 form the sequence

[11,9,3,9,7,3,7,51,2,5,4,2,3, 2],

whose maximum is Apax = 11.
The full-index bit-width is

b=|log,B] +1=|log,78] +1=7,
and the delta bit-width is
d = [log, Amax| +1 = [log,11] +1 = 4.

Store the first index ag = 0 using b = 7 bits as 0000000, then encode each of them —1 = 15
deltas using d = 4 bits. The relevant 4-bit encodings are

11 — 1011, 9 +— 1001, 7 — 0111, 5 — 0101, 4 — 0100, 3 — 0011, 2 +— 0010, 1 — 0001.
Concatenating the initial full index and the 15 delta fields yields the bitstring

000000010111001001110010111001101110101000100100101010000100011 0010,
————
ap

deltas

which is then appended to the header containing the number of variables and clauses as well
as the bit-widths b and d.
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Chapter 5

Invariants

Chapter 4 established that the symmetrical scheme incurs substantial computational
overhead, with cache access times exceeding those of traditional schemes by orders
of magnitude. The proposed solution introduces a multi-layer cache architecture in
which a higher-level cache uses computationally inexpensive graph invariants to
filter candidates before invoking the expensive canonical labelling procedure. The
viability of this approach depends on identifying invariants that strike an appropri-
ate balance between two competing objectives: minimizing computation cost while
maximizing discriminative power.

This chapter addresses research question 1 by systematically evaluating a range of
graph invariants across three major categories: basic structural properties such as
vertex and edge counts, neighbourhood-derived properties and centrality measures
such as betweenness and closeness. The evaluation examines both individual invari-
ants and pairwise combinations, assessing their performance across approximately
450 million graph pairs drawn from 212 problem instances.

The experimental results reveal a three-tiered performance landscape. Basic struc-
tural invariants achieve precision rates around 75 % while remaining four orders
of magnitude faster than canonical labelling. Neighbourhood-based invariants
reach precision rates near 97 % at computation costs approximately three orders
of magnitude faster than canonical labelling. Centrality-based invariants achieve
precision rates exceeding 99 % but require computation times comparable to or
exceeding canonical labelling itself. These findings suggest that neighbourhood-
based invariants, particularly the average neighbour degree sequence, represent the
most promising candidates for the L2 cache layer, offering substantial discriminative
power at acceptable computational cost.

5.1 Related Work

Dehmer et al. analysed combinations of distance-based and information-theoretic
invariants on sets of non-isomorphic graphs with identical sizes (e.g., 5-node and
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9-node graphs). They found that invariants effectively distinguish most graphs
in such small collections. However, as the cardinality of the graph set increases,
the same invariants often produce more collisions and lose discriminative power
(Dehmer et al., 2013).

This suggests that for applications such as model counters, which store limited sets
of components rather than exhaustively enumerating all non-isomorphic graphs of
a certain size, simple invariants can still serve as fast and effective heuristics to rule
out non-matches before applying full isomorphism checks.

Similarly, Aratjo et al. developed an invariant-based filtering system for algebraic
structures, achieving order-of-magnitude speed-ups by partitioning models into
blocks using hand-crafted and randomly generated invariants (Aratjo et al., 2022).
While these studies address the graph isomorphism problem, underlying the detec-
tion of structurally identical components in model counting, they primarily optimize
for discriminative power in batch processing scenarios rather than real-time cache
queries.

Notably, these studies measure success by minimizing the number of post-partitioning
isomorphism checks (Dehmer et al., 2013, Aratjo et al., 2022), accepting a 20-30%
runtime overhead for invariant calculation (Aratjo et al., 2022). In contrast, model
counting requires millions of cache lookups during search, where the overhead of
invariant computation accumulates significantly. This suggests that for model count-
ing applications, the trade-off between discriminative power and computation time
may differ substantially from these related works, potentially favouring cheaper
invariants that tolerate more false positives.

5.2 Methodology

The experiment uses a staged processing pipeline to assess both the discriminative
power and computation cost of selected graph invariants, individually and in pairs.
The solver first extracts components during search, after which each component
undergoes invariant computation and canonical labelling. The results enable two
forms of comparison: invariant-based predictions and label-based ground-truth
validation. From these comparisons, metrics are calculated to quantify both dis-
criminative power and computational overhead. The full workflow is illustrated in
Figure 5.1. Each stage writes to an intermediate database, ensuring that progress is
resumable and enabling independent inspection of every processing step.

5.2.1 Component Collection

Each component encountered by the solver is converted to a graph representation
and stored. Do note that the graphs stored are not the canonical graphs. The graphs
are serialized into a compact ASCII encoding, graph6, accompanied by a separate bit-
string that represents the clause-literal colouring. Additional details on the graph6
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FIGURE 5.1: Staged pipeline illustrating the experimental workflow for invariant
computation, canonical labelling, pairwise comparison and evaluation.

format are provided in Appendix B. These two artifacts together allow the origi-
nal graph structure to be reconstructed losslessly by standard Python graph libraries.

All graph data used in this study are produced by the SYMGANAK solver that is in-
strumented to mine components during search. The solver is configured to use the
symmetrical scheme, the VSADS variable branching heuristic and a time bound of
an hour. The cache size is limited to 3,2 GB. To control storage and downstream
computation for problems instances that generate many components, the compo-
nent miner applies pseudo-random sampling.

A random number is drawn when a new component is encountered, if this random
number is below the sampling percentage, the component is stored. Problems that
generated on the order of thirty thousand components or more were assigned a
sampling threshold of 0.01 while smaller problems had a sampling threshold of
1. Concretely, 120 problem instances were processed under the reduced sampling
threshold of 0.01 and 92 instances were processed with no sampling.

The probabilistic sampling technique might introduce some sampling bias. To this
case, a statistical test is conducted where a simple invariant distribution is compared
between a sampled dataset and a dataset where no sampling was performed (see
Appendix C.1 for details). The analysis confirmed that indeed there is a slight bias
towards larger components in the sampled dataset.
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5.2.2 Analysis

The analysis begins by filtering the collected components based on their STD encod-
ing. This filtering step prevents overcounting isomorphic components and avoids
creating the false impression that an invariant is effective simply due to the presence
of repeated instances.

Next, different invariants are computed for each graph. Specifically, these include
basic structural properties, neighbourhood-derived signatures, clustering & triangle
statistics and classical centrality measures. All selected invariants are available in
the IGRAPH library (Csardi and Nepusz, 2006) and are computationally feasible, with
at most polynomial-time complexity.

Some invariants produce sequences rather than scalars. In such cases, the sequences
are sorted to ensure a consistent representation. Each invariant computation is
timed and averaged. Note that graph construction time is excluded from these
measurements. Some invariants can be computed without constructing the full
graph, whereas others require the complete graph structure. The impact of this
overhead is evaluated later in Chapter 7.

Afterwards, pairwise comparisons are performed to evaluate how effectively each
invariant distinguishes between non-isomorphic graphs. To be precise, pairwise
comparisons are processed in blocks to avoid materializing the full (}) matrix of
pairs in memory. For each block, queries fetch invariant values for the involved
graphs and compare equality for each invariant. Moreover, all combinations of
invariants are computed by taking logical conjunctions of single-invariant equality
results and the time of the combined invariants is calculated as the sum of the
average time of each individual invariant.

The canonical labelling procedure is also computed for each vertex-coloured graph
to produce exact isomorphism classes. The canonical graph is serialized into a
compact canonical textual representation and a cryptographic hash is computed
(SHA-256) for fast comparison. Given two graphs, their isomorphism relationship
can be determined by comparing their canonical labels. As mention in Chapter 2,
two graphs are isomorphic if and only if their canonical labels are identical.

Each canonical labelling computation is also timed and recorded. These timings
serve as a practical baseline for evaluation. An invariant that is more expensive to
compute than canonical labelling itself offers little pragmatic benefit, as one could
simply use canonical labelling directly for definitive results.

To evaluate, predictions are compared against the ground truth canonical labels.
First, all graph pairs of interest are assembled and each pair is marked with its actual
isomorphism status based on whether their canonical encodings are identical. A
true positive (TP) occurs when an invariant predicts that a graph pair is isomorphic
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(the invariant values are equal) and the graphs are indeed isomorphic according
to the ground truth (their canonical labels match). Conversely, a false positive (FP)
occurs when an invariant predicts isomorphism but the graphs are actually non-
isomorphic (their canonical labels differ). Similarly, a true negative (TN) correctly
identifies non-isomorphic pairs, while a false negative (FN) incorrectly predicts
non-isomorphism for actually isomorphic pairs.

Finally, evaluation of predictions against ground truth proceeds by computing the
classification metrics (TN, FP, FN, TP) for each invariant. This pipeline is applied
to every problem instance in the benchmark, which contains 212 instances. The
confusion-matrix counts are then summed across all datasets, resulting in approx-
imately 450 million graph pairs evaluated in total. It should be noted that some
overcounting may occur in these aggregated totals. Although duplicate graphs are
filtered within each individual problem instance, the same graph may appear across
multiple datasets.

Once the total TP and FP counts are known for each invariant across the benchmark,
the precision score is computed. Precision is defined as TP / (TP + FP) and rep-
resents the proportion of predicted isomorphic pairs that are actually isomorphic.
This metric is particularly fitting for measuring discriminative power because it
directly quantifies how often an invariant’s prediction of isomorphism is correct.
An invariant with high precision produces few false positives, meaning that when it
predicts two graphs are isomorphic (based on equal invariant values), this prediction
is highly reliable.

5.3 Graph Invariants

The following provides formal definitions of the invariants employed in this experi-
ment, all of which are computed for the vertex-coloured graphs constructed from
the CNF formulas.

Let G = (V,E) be a finite, simple and undirected graph with |V| = n vertices and
|E| = m edges. Vertices are partitioned into two disjoint colour classes V = V, UV,
corresponding to clause-nodes and literal-nodes.

Size and Degree

The order and size of the graph are n = |V| and m = |E| (Diestel, 2025). The degree
of a vertex v € Visdeg(v) = [{u € V : (u,v) € E}|. The degree sequence of
G is the multiset {deg(v) : v € V}. Restricting to the two colour classes yields
the clause-degree sequence {deg(v) : v € V.} and the literal-degree sequence
{deg(v) : v € V}}.
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Average Degree

The average degree is 1 ",y deg(v) = 2%, and the graph density is p(G) = n(i’fl)
corresponding to the fraction of edges present relative to the complete graph on n
vertices.

Neighbourhood degree

The neighbourhood N(v) for a vertex v is defined as its immediately connected
neighbours as follows: N(v) = {u € V : (u,v) € E}. For a vertex v with neigh-
bourhood N(v), the average neighbour degree is knn(v) = ‘N(%)‘ Yuen(o) deg(u),
defined for vertices of non-zero degree. The average neighbour degree sequence is
the multiset {knn(v) : v € V}, with analogous variants restricted to V, and V.

Clustering

The local clustering coefficient represents the likelihood that two neighbours of
a vertex share an edge and is defined as the ratio of the number of triangles to
the number of connected triples (Watts and Strogatz, 1998). The global clustering
coefficient is the average C = % Y ey C(v). (Wasserman and Faust, 1994).

Centralities

Let d(u,v) denote the shortest-path distance between vertices u and v. The be-
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5;(;’) , where 0; is the number
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tweenness centrality of a vertex v is B(v) = Y stev
s#Et£D
of shortest paths between s and t and o5 (v) is the number of those paths passing

through v (Freeman, 1977).

Closeness centrality quantifies how close a vertex is to all other vertices in the net-
work. The closeness centrality of v is C(v) =1/ (Zuev\ (01 4(v, u)) It is defined as

the reciprocal of the average shortest-path distance between the vertex and every
other vertex (Freeman, 1978).

Eigenvector centrality measures the importance of a vertex by assigning it a score
that depends on the scores of its neighbours. Connections to highly ranked vertices
contribute more to a vertex’s centrality than connections to less influential ones
(Csérdi and Nepusz, 2006). Let A denote the adjacency matrix of G. The eigenvector
centrality vector x satisfies Ax = AmaxX, where A,y is the largest eigenvalue of A,
and x, gives the centrality of vertex v (Bonacich, 1987).

Centralization

Given a vertex-level centrality measure f(v), the centralization of the graph is de-
fined as Cent(G, f) = ¥_,cy (maxyev f(u) — f(v)). Normalized versions divide this
quantity by the maximum attainable value over all graphs of order n, which is
achieved by the star graph (Freeman, 1978).
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Triangles

A triangle is a 3-clique {u,v,w} C V. The triangle count per vertex is T(v) =
|{triangles containing v}| and the total triangle countis T(G) = § Yocy T(v), since
each triangle is counted once at each of its vertices (Csardi and Nepusz, 2006).

Distances

The eccentricity of a vertex v is ¢(v) = maxyev d(v, u). The eccentricity sequence is
the multiset {¢(v) : v € V}. The diameter and radius of the graph are diam(G) =
maxycy €(v), rad(G) = min,cy €(v), respectively. The girth of G is the length of its
shortest cycle, with girth infinite for acyclic graphs (Csardi and Nepusz, 2006).

5.4 Problem Instances

The problem instances or the CNF formulas used to evaluate SYMGANAK are the same
ones introduced by van Bremen et al. (van Bremen et al., 2021). These instances
include a diverse set of benchmarks from various sources and some are generated
using different methods, as detailed in the following paragraph.

* ProbLog Problems: These problems were created by compiling ProbLog
programs. They are used to evaluate the handling of probabilistic logic
(Derkinderen, 2020).

¢ N-Queens Problems with Symmetry Breaking: These problems were gener-
ated as described in A Study of Symmetry Breaking Predicates and Model Counting
(Wang et al., 2020). They focus on symmetry breaking predicates in the context
of the N-Queens problem.

¢ Classic N-Queens Problems: These instances use a classical encoding method
for the N-Queens problem, where the grid is encoded as a set of Boolean
variables (Shen, 2011).

¢ Latin Squares: These problems involve completing Latin squares (Gomes,
2012).

¢ Grid Problems: These problems involve grid networks and were obtained
from the CRIL PMC archive (Lagniez and Marquis, 2014). These instances are
directed grid networks of size N x N where each node has two outgoing edges
(to the right and down). The upper-left node is the source and the bottom-right
node is the sink. The benchmark query asks for the probability that the sink is
true given no evidence.

¢ FPGA Problems: These instances are related to the configuration of FPGA
switch-boxes (Aloul et al., 2002).

* CNFgen Problems: These include instances generated using the CNFgen
tool (Lauria et al., 2017). They cover a range of problems such as counting
principles, graph colouring and Tseitin transformations.
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5.5 Results
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FIGURE 5.2: Precision versus mean computation time per component (seconds, log
scale). Each point is an invariant (or invariant combination). The vertical dashed
line marks the average runtime of canonical labelling, invariants to the left and near
the top are Pareto-efficient (high precision, low cost).

Figure 5.2 presents the precision versus mean computation time for all evaluated
invariants and invariant combinations across approximately 450 million graph pairs.
Each point represents either a single invariant or a combination of two invariants.
The vertical dashed line indicates the average runtime of canonical labelling, which
serves as the baseline for comparison. Invariants positioned to the left of this line
are computationally cheaper than canonical labelling, while those near the top of the
plot demonstrate high discriminative power. The Pareto-efficient invariants, located
in the upper-left region, achieve high precision at low computational cost.

The results reveal three distinct performance tiers. First, invariants highlighted in
red represent the best-performing combinations in terms of balancing precision and
computational efficiency. These include pairwise combinations such as n_nodes with
avg neighbour _degree_sequence, n_edges with avg neighbour_degree_sequence
and similar variants.

As shown in Table 5.2, these combinations achieve precision scores of approximately
96.7% while maintaining computation times roughly three orders of magnitude
faster than canonical labelling, as illustrated in Table 5.1.

Second, invariants highlighted in green indicate combinations achieving precision
scores exceeding 99%. These high-precision combinations, detailed in Table 5.3,
include most of the time centrality-based measures such as closeness, betweenness
or eigenvector centrality.
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Third, simpler structural invariants such as avg_degree, n_nodes and n_edges achieve
more modest precision scores around 72-76%, yet remain computationally inexpen-
sive.

TABLE 5.1: Computation time comparison showing mean runtime per component
for invariants from each performance tier. All times are compared against the
canonical labelling baseline of 7.11 milliseconds.

Invariant Mean Time (s) Speed-up Factor
Canonical labelling baseline

Canonical labelling 0.00711 1.0x
High-precision centrality-based

n_clauses & closeness_sequence 0.01885 0.38x

n_literals & betweenness_sequence 0.04452 0.16x
Mid-tier neighbourhood-based

avg_degree & avg_neighbour_degree_sequence 0.0000587 121x

n_edges & avg_neighbour_degree_sequence 0.0000589 121x

n_nodes & avg_neighbour_degree_sequence 0.0000596 119x
Basic structural invariants

n_nodes & avg_degree 0.00000173 4110x%

n_nodes & n_edges 0.00000189 3762x

A total of 162 invariant combinations achieve precision scores exceeding 99%. The
invariant avg neighbour_degree_sequence provides particularly noteworthy per-
formance which achieves precision scores within two percentage points of the
highest-performing centrality-based combinations (96.7% versus 99.9%).

TABLE 5.2: Performance metrics of select invariant combinations, showing true
positives (TP), false positives (FP), true negatives (TN), false negatives (FN) and
precision scores.

Index TP FP TN FN Precision

Neighbourhood-based combinations

avg_degree & avg neighbour_degree seq 1287245 43579 448616967 0 0.967

density & avg_neighbour_degree_seq 1287245 43579 448616967 0 0.967

n_edges & avg_neighbour_degree_seq 1287245 43579 448616967 0 0.967

n_nodes & avg_neighbour_degree_seq 1287245 43579 448616967 0 0.967
Basic structural combinations

n_edges & avg_degree 1287245 400477 448260069 0 0.763

n_nodes & avg_degree 1287245 400477 448260069 0 0.763

nnodes & n_edges 1287245 400477 448260069 0 0.763
Single invariants

avg_degree 1287245 498234 448162312 0 0.721
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These results align with the intuition presented by Dehmer et al. (Dehmer et al.,
2013), who observed that invariants can be highly effective when applied to diverse
collections of graphs rather than exhaustive enumerations of all non-isomorphic
graphs of a fixed size. The benchmark employed in this study exhibits significant
diversity, containing isomorphism classes spanning a wide range of graph sizes
and structures rather than being restricted to graphs of uniform order. Under these
conditions, even simple structural invariants such as neighbourhood properties
demonstrate considerable discriminative power without requiring expensive cen-
trality computations.

TABLE 5.3: Performance metrics for selected high-precision invariant combinations
(precision > 99%). All high-performing combinations include at least one centrality-
based measure.

Index P FpP N FN  Precision
Colour-centrality combinations
n_clauses & closeness_seq 1287245 40 448660506 0  0.999969
n _literals & closeness_seq 1287245 40 448660506 0  0.999969
n _literals & betweenness_seq 1287245 43 448660503 0  0.999967
n_literals & closeness_centralization 1287245 210 448660336 0  0.999837
Centrality-based combinations
betweenness_seq 1287245 8560 448651986 0  0.993394
betweenness_seq & triangle_counts 1287245 8560 448651986 0  0.993394
degree_sequence & betweenness_seq 1287245 8560 448651986 0  0.993394
literal_degree_seq & betweenness_seq 1287245 8560 448651986 0  0.993394
clause_degree_seq & eccentricity_seq =~ 1287245 9285 448651261 0  0.992839

However, if the precision rate of centrality measures could be achieved at the compu-
tational cost of neighbourhood-based invariants, the resulting combination would
be optimal for real-time model counting applications. This possibility motivates
the use of centrality measures as variable branching heuristics in Chapter 6, which
investigates whether incorporating centralities into the branching strategy can offset
their computational overhead.
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Chapter 6

Variable Branching Heuristic

The evaluation of graph invariants in Chapter 5 revealed that centrality-based in-
variants achieve precision rates exceeding 99 %, a bit higher than the 97 % achieved
by neighbourhood-based measures. However, this superior discriminative power
comes at a steep computational cost. The average time required to compute central-
ity measures exceeds the cost of canonical labelling itself, rendering these invariants
impractical for cache lookup operations that must be performed millions of times
during search.

This observation suggests an alternative application for centrality measures. Rather
than computing them solely for cache lookups, centrality scores might serve a
dual role as both variable-branching heuristics and graph invariants. If centrality-
informed branching produces more balanced component splits and elevates cache
hit rates, the performance gains from improved search efficiency could offset the
computational cost of computing centrality measures for every component encoun-
tered during search.

The experimental design distinguishes between global and local centrality computa-
tion strategies. Global strategies compute centrality measures once on the primal
graph representing the initial formula. Local strategies recompute centrality mea-
sures for each component encountered during search, providing component-specific
information.

The results addresses research question 1 by demonstrating that centrality-based
invariants, despite their superior discriminative power shown in Chapter 5, cannot
achieve the computational efficiency required for practical cache lookup operations.
Specifically, local recomputation of centrality measures on components encountered
during search fails to improve performance. Even when achieving lower decision
counts in some cases, the overhead of repeated centrality calculation outweighs any
benefits from component-specific guidance.
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However, the investigation yields a complementary positive finding. Betweenness
centrality computed once on the primal graph achieves an 8% improvement in PAR-
2 score over the CSVSADS baseline, solving seven additional problem instances.
This result validates the hypothesis that centrality-guided branching produces more
balanced component decompositions.

6.1 Related Work

Bliem and Jarvisalo explored centrality-based search heuristics for SAT-based exact
model counting. Their experiments employed betweenness centrality on the primal
graph, i.e. the graph representation of the root formula, and showed empirical
improvements in the model counter sharpSAT (Bliem and Jarvisalo, 2019).

Betweenness centrality, originally formalized in social-network analysis, identifies
nodes that lie on many shortest paths and therefore act as intermediaries between
different parts of the graph (Freeman, 1977). Nodes with high betweenness often sit
between communities. Branching on such variables can therefore lead to more bal-
anced component decompositions, which are believed to contribute to the observed
performance gains in sharpSAT (Bliem and Jdrvisalo, 2019). A concrete example of
such a balanced split is shown in Appendix D.1.

Despite these promising results, the ongoing consensus in the literature is that the
best variable-selection heuristic depends strongly on the problem instance (van
Bremen et al., 2021). Centrality-based heuristics are a promising option but not a
universal remedy:.

6.2 Methodology

Bliem et al. only explored using centrality measures on the primal graph and not
on the local graphs encountered during search. This was identified as future work
in their paper, which is investigated here. The experimental design is structured
hierarchically across five levels, as illustrated in Figure 6.1.

Level 1: Strategy

The top-level choice determines when centrality measures are computed. A global
strategy computes centrality scores once on the primal graph. A local strategy re-
computes centrality measures for each component encountered during search.

Level 2: Centrality Computation
After choosing the strategy, the next decision concerns which centrality measure
to compute and whether to use exact or approximate computation. Two primary
centrality measures are evaluated:
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FIGURE 6.1: Hierarchical structure of the experimental design. Level 1 distinguishes global
versus local branching strategies. Level 2 specifies the centrality computation method:
exact (bet = betweenness, cls = closeness, and = average neighbour degree) or approximate
with cut-off (bta = betweenness-approximate, cla = closeness-approximate). Level 4 defines
the graph representation: fg = full graph with separate literal nodes, q = quotient graph
with merged positive/ negative literals, g-nb = quotient without binary edges. Level 5
encompasses implementation variants such as cache-awareness (cs/ics), optimization such
as using centrality scores as initial colouring for canonical labelling.

Level 3: Grap% Representation
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Betweenness centrality quantifies how often a vertex lies on shortest paths between
other vertex pairs. For a vertex v, it counts the fraction of all shortest paths that pass
through v. Vertices with high betweenness act as bridges between different graph
regions (Brandes, 2001). Exact betweenness has time complexity O(|V||E|) with V
and E the vertex set and edge set of a graph.

Closeness centrality measures how easily a vertex can reach (or be reached from)
all other vertices, defined as the inverse of the mean distance to all other vertices.
Exact closeness requires O(n|E|) time where n is the number of vertices for which
centrality is computed.

To reduce computational overhead, cut-off-based approximations can be used. They
compute range-limited variants that consider only shortest paths of length at most k
(the cut-off parameter). This approximation maintains the same asymptotic worst-
case complexity but can achieve substantial practical speed-ups.
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Level 4: Graph Representation
Before computing centralities, the component must be converted to a graph repre-
sentation. Three representations are tested, ordered from most to least precise:

Full graph (-£g): Each positive and negative literal receives a distinct node and clause
nodes are included. Binary and longer clauses form the edges. This representation
preserves complete structural information but is most expensive to construct and
analyse. The graph construction follows Section 2.5.

Quotient graph (-q): Positive and negative literals of the same variable are merged
into a single variable node. Clause nodes remain, with edges connecting variables
to the clauses containing them. This reduces the vertex count by approximately half
while retaining clause structure.

Quotient without binary edges (-q-nb): Further simplification removes binary clause
edges, retaining only connections through clauses of length three or greater. The
hypothesis is that omitting binary edges may reduce computation time without
significant information loss for branching.

Since branching requires variable scores, centrality scores must be aggregated appro-
priately. For full graphs where each literal has a separate node, the centrality scores
of the positive and negative literal nodes are summed to produce a single variable
score. For quotient graphs, the single variable node’s centrality score is used directly.
In both cases, centrality scores of clause nodes are not used for branching decisions.

Level 5: Implementation Variants
The final level encompasses additional implementation choices that modify the base
configurations:

Cache-aware variants (cs/ics): These incorporate cache-awareness mechanisms simi-
lar to CSVSADS or ICSVSADS, where variable cache scores (CS) are decremented
when their components are cached.

centralitymqa = max{score(centrality, v) | v € unassigned variables} (6.1)
score(CSC, ) {score(CS,v), if score('centmlity,v) > 1 - centralitymay 62)
—o00, otherwise
score(ICSC, v) = {score(ICS, v), if score(.centrality,v) > 1 - centrality gy 63)
—00, otherwise

Optimized variants: Centrality vectors may be used to provide initial colourings for
nauty-based canonical labelling, potentially speeding up canonical computation by
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providing a better starting partition of vertices. This optimization is particularly rel-
evant for local strategies where both centrality and canonicalization are performed
per component.

There are several suitable metrics for evaluating variable-branching heuristics.
PAR-2 scores are used which are complemented with decision and conflicts count
(Moskewicz et al., 2001).

6.3 Setup

All experiments were executed on the Genius compute cluster, part of the Flemish
Supercomputer Center (VSC). The software environment consisted of the follow-
ing modules: Boost version 1.85.0, SQLite version 3.45.3, GCCcore toolchain ver-
sion 13.3.0, and GMP version 6.3.0. Runtime dependencies include an igraph shared
library version 0.10.15 and nauty version 2.9.0.

All centrality measures are computed over the full vertex set, with igraph centrality
normalization disabled. Approximate variants of closeness and betweenness cen-
trality are computed using a cut-off parameter of 4. In cases where closeness-based
measures produce undefined values, all NaN entries are replaced with —1 to ensure
deterministic behaviour.

Components are processed in ascending order of size during the splitting procedure.
The cache score parameter r was fixed to 0.9. The benchmark dataset consists of 212
instances and is identical to the one used in Chapter 5. Each instance was executed
under the same configuration on the Genius cluster, using the specified versions of
igraph and nauty.

6.4 Results

6.4.1 Global Centrality Measures

Table 6.1 presents results for solvers using centrality measures computed once on
the primal graph. The baseline ss-csvsads solver achieves a PAR-2 score of 2894.00
seconds across 129 solved instances, with an average of 91,076 decisions and 13,376
conflicts per instance.

Several global centrality variants outperform this baseline. The best performer is
ss-glbal-bet-fg, which computes betweenness centrality on the full graph repre-
sentation and achieves a PAR-2 score of 2675.29 seconds while solving 136 instances,
seven more than the baseline. This represents an 8% improvement in PAR-2 score.
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TABLE 6.1: PAR-2 and descriptive stats (mean and standard deviation) for decisions
and conflicts.

Solver Inst. PAR-2[s] Dec. mean Dec.std Conf. mean Conf. std
hpc-csvsads 99 3910.86 1,288,926 6,123,032 10,110 37,211
ss-csvsads 129 2894.00 91,076 597,571 13,376 43,990
ss-glbal-bet-q 134 2730.43 75,513 333,058 61,581 310,035
ss-glbal-bet-fg 136 2675.29 79,933 297,136 65,679 274,157
ss-glbal-cls-q 133 2766.73 95,048 360,108 64,013 330,068
ss-glbal-cls-fg 131 2824.13 85,945 323,355 50,945 280,795
ss-glbal-and-q 117 3290.39 96,586 322,390 39,722 187,442
ss-glbal-and-fg 132 2777.24 161,875 1,221,925 41,933 268,949
ss-glbal-cla-q 102 3793.20 154,555 937,099 25,479 86,015
ss-glbal-cla-fg 99 3878.94 74,733 324,431 22,242 88,483
ss-glbal-bta-q 126 2895.33 36,238 118,586 22,546 109,433
ss-glbal-bta-fg 128 2919.37 47,576 193,052 19,679 78,579

Notably, the betweenness-based variants show substantially higher conflict counts
than the baseline (approximately 62,000-66,000 versus 13,376), yet achieve better
overall performance. The decision counts remain slightly lower than the baseline.

Closeness centrality variants (ss-glbal-cls-q and ss-glbal-cls-fg) also show
improvements over baseline, though less pronounced than betweenness. The full-
graph closeness variant solves 131 instances with a PAR-2 of 2824.13 seconds.

Average neighbour degree (and) and closeness-approximate (cla) variants generally
perform worse than betweenness and closeness, with the closeness-approximate
quotient variant solving only 102 instances.

The comparison between quotient graphs and full graphs reveals mixed results.
For betweenness centrality, the full-graph representation marginally outperforms
the quotient representation (PAR-2 of 2675.29 versus 2730.43), suggesting that the
additional structural detail in full graphs justifies the modest increase in computation
time. For other centrality measures, the differences are less consistent.

6.4.2 Local Centrality Measures

Table 6.2 shows the results for solvers that recompute centrality measures at each
component during search. In contrast to the global approach, local centrality com-
putation generally fails to improve upon the baseline, and in many cases performs
substantially worse.

The best local variant is ss-local-cls-q, which matches the baseline by solving 129
instances but achieves a slightly worse PAR-2 score of 2936.49 seconds compared
to the baseline’s 2894.00 seconds. This variant shows significantly higher decision
counts (176,573 versus 91,076 on average), indicating that the recomputed centrality
scores may be leading to less balanced splits that require more branching decisions.
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TABLE 6.2: PAR-2 and descriptive stats (mean and standard deviation) for decisions
and conflicts for the local solver variants.

Solver Inst. PAR-2[s] Dec. mean Dec.std Conf. mean Conf. std
hpc-csvsads 99 3910.86 1,288,926 6,123,032 10,110 37,211
ss-csvsads 129 2894.00 91,076 597,571 13,376 43,990
ss-local-bet-g-nb 111 3535.76 131,461 569,122 26,589 110,593
ss-local-bet-q 119 3317.46 82,068 229,777 42,270 139,767
ss-local-bet-fg 113 3497.36 66,305 192,198 33,195 112,524
ss-local-bet-fg-optimised 104 3744.98 47,200 186,985 16,125 63,287
ss-local-cls-g-nb 122 3179.94 149,076 819,029 16,173 59,832
ss-local-cls-q 129 2936.49 176,573 1,184,605 22,586 82,658
ss-local-cls-fg 124 3097.86 48,035 125,630 24,290 78,212
ss-local-cls-fg-optimised 123 3133.02 47,387 125,936 24,026 78,476
ss-local-and-g-nb 46 5670.69 1,154,929 6,672,156 8,926 36,990
ss-local-and-q 99 3897.79 215,291 1,071,474 6,401 28,780
ss-local-and-fg 79 4559.68 194,605 1,051,996 4,308 11,205
ss-local-cla-q-nb 103 3776.63 170,778 891,235 13,210 69,618
ss-local-cla-q 101 3852.75 71,406 351,710 4,592 19,844
ss-local-cla-fg 93 4126.82 43,002 172,425 24,727 146,293
ss-local-bta-q-nb 107 3664.92 136,505 507,715 38,128 158,324
ss-local-bta-q 97 3994.44 99,289 474,684 15,920 60,844
ss-local-bta-fg 90 4209.68 51,971 208,967 4,388 16,636

The worst performer is ss-local-and-q-nb, which solves only 46 instances with
a PAR-2 score of 5670.69 seconds, nearly twice the baseline PAR-2. The aver-
age decision count for this variant exceeds 1.1 million, comparable to the slower
hpc-csvsads baseline. The 'nb” suffix denotes variants that do not include binary
clauses in the graph construction.

The failure of local centrality measures to improve performance can be attributed to
computational overhead. Recomputing centrality measures for every component
encountered during search is expensive, particularly for larger components. The
cost of these repeated computations outweighs any benefit gained from having
component- specific branching guidance. Even when local variants achieve lower
decision counts (e.g., ss-local-bet-fg with 66,305 decisions versus baseline’s
91,076), the PAR-2 scores remain worse due to the per-component computation
overhead.

6.4.3 Cache-Aware Variants

Table 6.3 examines the interaction between global betweenness centrality and
cache-aware branching heuristics. The baseline comparison includes three variants:
VSADS, CSVSADS and ICSVSADS (the symmetry-aware extension of CSVSADS).
Interestingly, all three solve 129 instances with nearly identical PAR-2 scores around
2894-2906 seconds, consistent with van Bremen’s finding that cache-aware heuristics
show instance-dependent rather than uniformly superior performance (van Bremen
etal., 2021).
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TABLE 6.3: PAR-2 and descriptive statistics (mean and standard deviation) for
decisions and conflicts for the CS/ICS/global solver variants.

Solver Inst. PAR-2[s] Dec.mean Dec.std Conf. mean Conf. std
ss-vsads 129 2896.68 83,241 465,303 16,026 58,596
ss-csvsads 129 2894.00 91,076 597,571 13,376 43,990
ss-icsvsads 129 2905.75 95,374 553,953 16,071 53,561
ss-glbal-bet-fg 137 2667.26 86,437 338,200 64,060 313,801
ss-cs-glbal-bet-fg 136 3234.79 77,864 286,560 65,972 275,206
ss-ics-glbal-bet-fg 134 2722.13 59,926 212,347 48,680 204,711

The pure global betweenness variant ss-glbal-bet-fg achieves the best overall
performance in the entire experimental suite, solving 137 instances with a PAR-2
of 2667.26 seconds. This represents an 8% improvement over the CSVSADS baseline.

The cache-aware global betweenness variant ss-cs-glbal-bet-fg solves 136 in-
stances but with a substantially worse PAR-2 of 3234.79 seconds, worse than both
the pure global betweenness and the baseline CSVSADS.

Surprisingly, the symmetry-aware variant ss-ics-glbal-bet-fg performs better
than the cache-aware version, solving 134 instances with a PAR-2 of 2722.13 seconds.
While this is still slightly worse than the pure global betweenness approach, it
is substantially better than the cache-aware variant. The ICSVSADS mechanism,
which decrements scores for variables in both the cached component and previously
seen symmetric components, appears to interact more favourably with betweenness
centrality than the simpler CSVSADS approach. The reduced decision count (59,926
on average) and conflict count (48,680) suggest that symmetry awareness helps
avoid redundant exploration.

These results demonstrate that cache awareness does not uniformly improve centrality-
based heuristics and may in fact degrade performance when the mechanisms conflict.
The symmetry-aware approach shows more promise but still does not improve upon
pure global betweenness centrality.

6.5 Discussion

The experimental results lead to several important conclusions regarding the use of
centrality measures as variable-branching heuristics for model counting.

Global centrality measures provide consistent improvements. Computing be-
tweenness centrality once on the primal graph and using these scores throughout
the search yields the best overall performance, with an 8% improvement in PAR-2
score and seven additional solved instances compared to the CSVSADS baseline.
This validates Bliem et al.’s findings and demonstrates that centrality-based branch-
ing can improve component decomposition quality (Bliem and Jarvisalo, 2019).
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6.5. Discussion

Local recomputation is prohibitively expensive. Despite the theoretical appeal
of component-specific centrality scores, recomputing centrality measures during
search fails to offset its computational cost. Even when local variants achieve lower
decision counts, the overhead of repeated centrality calculations results in worse
wall-clock performance. This answers Bliem et al.’s open question about local cen-
trality computation: on this benchmark set, it is not practical.

Cache awareness interferes with centrality benefits. Incorporating CSVSADS-style
cache awareness into global betweenness branching degrades rather than improves
performance. The mechanism of decrementing scores for variables in cached com-
ponents conflicts with the topological guidance provided by betweenness centrality.
Symmetry awareness (ICSVSADS) mitigates this interference somewhat but still
does not improve upon pure global betweenness.

Implications for multi-layer caching. The original motivation was to explore
whether centrality measures could serve as graph invariants for multi-layer com-
ponent caching. The experimental results indicate that centrality measures, while
providing discriminating power, are too expensive to compute during search.
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Chapter 7

Multi-Layer Cache

The investigations in Chapters 5 and 6 established two critical findings that inform
the design of multi-layer caching systems. First, the invariant analysis revealed
that combinations involving average neighbour degree sequences achieve preci-
sion scores of 96.7 %, approaching the near-perfect 99.9% percent precision of
centrality-based invariants while requiring orders of magnitude less computation
time. Second, the variable branching experiments demonstrated that centrality
measures, despite their superior discriminative power, prove impractical for local
computation due to their computational overhead. These findings suggest that
lightweight neighbourhood-based invariants represent the most promising founda-
tion for intermediate cache layers that filter candidates before invoking expensive
canonical labelling.

This chapter addresses research question 2 by evaluating the practical performance
of multi-layer cache architectures in the context of a complete solver implementa-
tion. The experimental evaluation examines several critical factors that influence
multi-layer cache performance. The choice of invariant for L2 filtering determines
both the discriminative power and the computational overhead of the intermedi-
ate layer. The quality of the hash function affects collision rates and bucket chain
lengths, which directly impact lookup efficiency. The interaction between cache ar-
chitecture and variable branching heuristics may produce synergistic or antagonistic
effects that alter overall solver performance. By systematically varying these factors
across a diverse benchmark suite of 212 problem instances, the experiments identify
configurations that achieve optimal trade-offs between filtering effectiveness and
computational overhead.

The results demonstrate that multi-layer caching produces substantial performance
improvements when appropriately configured. The optimal two-layer architecture
achieves a PAR-2 score of 2514.66 seconds with 140 solved instances, representing a
13 % improvement over the single-layer baseline’s 2896.68 seconds and 129 solved
instances. This configuration employs a combination of basic structural properties as
the L2 invariant, paired with the cs-centrality branching heuristic and an improved
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hash function. However, the experiments also reveal that performance gains depend
on the quality of the hash function used in L2, with poor hash distribution negating
the benefits of even highly discriminative invariants. Three-layer architectures
show mixed results, with certain configurations matching two-layer performance
while others degrade substantially, indicating that additional cache levels introduce
complexity with no real performance gains.

7.1 Methodology

The experimental design compares multiple cache configurations across a diverse
benchmark suite to determine which invariant strategies yield the best end-to-end
solver PAR-2 performance. Each configuration combines the L2 cache with a specific
invariant, while a baseline uses only the L3 cache. The solver runs on the same 212
benchmark instances used in Chapter 5.

The invariants under evaluation are the cheap but powerful invariants identified in
Table 5.2. Additionally, some very simple invariants are also tested, these include
scalar invariants such as the number of variables. This simple property requires no
graph construction and can be computed directly from the component structure in
negligible time. Stronger invariants require some form of constructing the graph’s
adjacency list.

Performance evaluation focuses on two metrics. The amount of components found
in the L2 cache at termination, which measures how effectively each invariant fil-
ters candidates before canonical labelling, with higher amounts indicating better
discrimination. More critically, the PAR-2 metric, captures the combined effect of all
factors: invariant computation overhead, canonical labelling frequency and cache
lookup efficiency.

All experiments execute on the Genius compute cluster under identical resource
constraints. Each job receives a single CPU core, 8 GB of memory and a one-hour
time limit. The cache size remains fixed at 3.2 GB across all configurations to isolate
the effect of the invariant choice from cache capacity considerations. The solver
uses either global betweenness centrality branching heuristic or the classic VSADS
heuristic. Sometimes, the cache score annotated CS from CSVSADS is used in
tandem with centrality scores, which is annotated as cs-centrality.
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7.2 Results

7.2.1 Two-Layer Cache

Table 7.1 presents the PAR-2 scores for a two-layer cache solver using centrality-
based branching. The baseline is a solver with centrality based branching but with
only one layer cache. The baseline configuration solves 137 instances with a PAR-2
score of 2667.26 seconds. Several invariant choices demonstrate competitive or
improved performance relative to this baseline.

TABLE 7.1: PAR-2 scores of a two-layer cache solver with centrality based branching

ID Solver Inst. PAR-2 [s]
baseline 137 2667.26

1 n_vars 136 2666.94
2 n.vars & n_long_clauses 137 2646.52
3 n.vars & n_long_clauses & n_bin_clauses 138 2615.47
4 n_edges & avg_degree 138 2611.03
5 n.nodes & avg_degree 137 2641.32
6 nnodes & n_edges 139 2584.95
7 avg.degree 137 2658.89
8 avg_degree & avg neighbour_degree_ sequence 134 2723.68
9 density & avg_neighbour_degree_sequence 135 2704.57
10 n_edges & avg_neighbour_degree_sequence 134 2722.87
11 n_nodes & avg_neighbour_degree_sequence 135 2703.49

The results reveal that the simplest invariants show modest improvements: using
n_vars alone solves 136 instances with a nearly identical PAR-2 of 2666.94 seconds.
The triple combination using n_bin_clauses further improves to 2615.47 seconds
with 138 solved instances, representing a 1.9% improvement over baseline.

Invariants that require adjacency list construction show strong performance. The
configuration using n_nodes with n_edges achieves the best PAR-2 score of 2584.95
seconds while solving 139 instances, marking a 3.1% improvement over baseline.

The average neighbour degree sequence combinations demonstrate an unexpected
outcome. Despite achieving 96.7% precision in the discriminative power analysis,
these invariants underperform relative to simpler invariants. Invariant with ID 8
solves only 134 instances with a PAR-2 of 2723.68 seconds, worse than baseline.
Similar degradation appears across all four neighbour degree sequence variants
(IDs 8-11), with PAR-2 scores ranging from 2703.49 to 2723.68 seconds.
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To isolate the performance benefits of the two-layer cache from the gains provided
by the centrality heuristic, Table 7.2 presents results using the VSADS branching
heuristic. This configuration reveals the pure improvement from multi-layer caching
against a different baseline.

TABLE 7.2: PAR-2 scores of solver with VSADS branch heuristic

ID Solver Inst. PA-R2[s]
baseline 129 2896.68

1 n_vars 131 2835.04
2 n.vars & n_long_clauses 134 2731.30
3 n.vars & n_long_clauses & n_bin_clauses 134 2757.57
4 n_edges & avg_degree 134 2727.42
5 nmnodes & avg_degree 135 2687.66
6 nonodes & n_edges 135 2699.07
7 avg_degree 132 2813.22
8 avg._degree & avg neighbour_degree_sequence 127 2984.66
9 density & avg_neighbour_degree_sequence 126 3014.38
10 n_edges & avg_neighbour_degree_sequence 128 2966.73
11 n_nodes & avg_neighbour_degree_sequence 126 3010.50

The VSADS baseline solves 129 instances with a PAR-2 of 2896.68 seconds. Under
this heuristic, the relative performance of invariants shifts noticeably. The best per-
former is n_nodes with avg_degree (ID 5), which solves 135 instances with a PAR-2
of 2687.66 seconds, representing a 7.2% improvement. Several other invariants also
show substantial gains.

Notably, the average neighbour degree sequence combinations (IDs 8-11) perform
even worse under VSADS than under centrality branching. These invariants solve
only 126-128 instances with PAR-2 scores exceeding 2984 seconds, representing a
degradation of 3-4% relative to the VSADS baseline.

The two-layer design is intended to reduce the number of expensive L3 checks by
introducing a cheaper L2 filter. Whether this helps in practice depends on two
factors. First, how selective the L2 invariant is to avoid large candidate sets, and
second, the hash function used to select the buckets of elements to compare in the
L2 cache. If the buckets are too large, or if the hash values for many graph invariants
are identical, it would create one large bucket such that each cache access requires
traversing the entire L2 cache instead of a small candidate set. The following tables
characterize these effects using the cache state observed at solver termination, ag-
gregated across the benchmark suite.

Table 7.3 reports the number of cached components per cache level. Each solver
variant uses the same centrality-based branching heuristic, while differing only in
the invariant used for the L2 cache.
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TABLE 7.3: Cache composition per cache level (mean =+ std).

Solver L3 count (mean =+ std) L2 count (mean =+ std)
n_vars 46522.11 + 117499.86 133.72 + 302.85
avg_degree 45906.19 4+ 121673.81 318.65 + 1131.08
n_edges & avg_degree 43340.38 + 114077.65 3808.54 4 10725.58

avg_degree & avg neighbour_degree_sequence 11934.62 + 35894.90 19911.00 + 46979.92

Table 7.4 reports the average number of variables stored in a cached component
(|var|), again split by cache level. Again, each solver variant uses the same centrality-
based branching heuristic, while differing only in the invariant used for the L2
cache.

TABLE 7.4: Average |var| per cache level (mean = std).

Solver L3 avg |var| (mean £ std) L2 avg |var| (mean + std)
n_vars 451.85 4+ 1597.52 524.63 + 856.00
avg_degree 460.65 £ 1469.41 421.55 £ 752.15
n_edges & avg_degree 453.75 + 1675.17 510.56 + 1141.45
avg_degree & avg_neighbour_degree_sequence 310.32 £+ 1267.81 460.38 £+ 1125.59

The cache composition data reveals how different invariants affect component
promotion from L2 to L3. The simplest invariant, n_vars, produces a cache with
predominantly L3 components and relatively few components remaining at L2. This
suggests that the n_vars invariant, while cheap to compute, provides insufficient
discrimination. Most components must be promoted to L3 for canonical verification,
resulting in minimal benefit from the two-layer architecture. The average compo-
nent size is similar across both levels, at approximately 450-525 variables.

The most striking pattern appears with the avg_degree & avg neighbour_degree_seq
combination. This invariant produces 11,935 L3 components on average while main-
taining only 19,911 components in L2 on average. Understanding this result requires
examining how hash collisions affect cache performance.

Both cache levels are accessed through hashing. When multiple entries map to the
same hash bucket, they are stored in the same cache but linked through pointers. A
collision is counted whenever an entry is not the tail of its bucket list. Equivalently,
a bucket chain of length k contributes k — 1 collisions. This metric captures the
amount of pointer-chasing and per-candidate comparisons introduced by hashing,
which can offset the benefits of intermediate filtering.

Table 7.5 presents collision analysis for each solver configuration, showing collision
counts per cache level. The solver uses the centrality-based heuristic with the
invariants mentioned in the table for the L2 cache. The data is collected from the
cache state when the solver finishes.
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TABLE 7.5: Collision counts per cache level (mean =+ std).

Solver L3 collisions (mean £ std) L2 collisions (mean =+ std)
n_vars 10108.70 + 37011.64 1.07 £9.15
avg_degree 10713.79 + 39812.82 11.81 +45.97
n_edges & avg_degree 9237.70 £ 34383.32 2622.34 + 8546.97
avg_degree & avg neighbour_degree_sequence 1859.96 + 7139.35 21514.32 + 48283.80

The collision data exposes a critical trade-off between invariant discrimination and
hash distribution. The n_vars invariant generates approximately 10,109 collisions in
L3 but only 1 collision in L2 on average. However, the minimal L2 collisions come
at the cost of poor filtering, as evidenced by the low L2 component count in Table 7.3.

The avg_degree invariant shows similar L3 collision behaviour (10,714) but experi-
ences an order of magnitude more L2 collisions (12). The combination of n_edges &
avg_degree demonstrates the following behaviour: L3 collisions remain comparable
(9,238), but L2 collisions explode to 2,622 on average. This high collision rate might
explains the modest performance gains observed in Table 7.1 despite the invariant’s
reasonable discrimination power. The hash function struggles to distribute the com-
bined invariant values uniformly across buckets, forcing excessive pointer traversal
during L2 lookups.

The avg neighbour degree_sequence combination exhibits the most severe col-
lision problem, with 21,514 L2 collisions on average and standard deviation of
48,284. This massive collision rate, combined with the high L2 component count
(19,911), could create extremely long bucket chains that must be traversed dur-
ing cache lookups. Despite the invariant’s excellent 96.7% precision for detecting
non-isomorphic pairs, the practical benefits could be negated by collision-induced
overhead. The data suggests that the hash function fails to capture the structural
diversity encoded in the neighbour degree sequences, mapping many distinct
sequence values to the same buckets. Interestingly, the L3 collisions for this configu-
ration are much lower (1,860), indicating that canonical labels might distribute more
uniformly than the graph invariant values.

In short, these collision counts appear excessively high and might stem from the
hash function causing too many collisions. Each graph invariant is hashed and
based on this hash value, the bucket or chain for a given component is determined.
If the hash function lacks sufficient diversity and causes excessive collisions, per-
formance degrades substantially. To test this hypothesis, xxHash is used instead for
hashing the graph invariants in L2. The hash value for L3, which is based on the
canonical graph, remains unchanged. More detailed explanation can be found in
Appendix D.1 regarding both hash types and the specific hash functions employed.
Previously, a linear or polynomial hash was used, but the polynomial hash likely
suffered from overflow issues resulting in erroneous hash values.
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Table 7.6 presents the PAR-2 performance when xxHash replaces the original hash
function for L2 invariant hashing. The solver continues to use the centrality-based
heuristic with the invariants mentioned in the table for the L2 cache. The data is
collected from the cache state when the solver finishes.

TABLE 7.6: PAR-2 scores of solver with centrality and xxHash.

Solver Inst. PAR-2[s]
baseline with VSADS 129 2896.68
baseline with centrality 137 2667.26
n_vars 135 2709.29
avg_degree 138 2627.56
n_edges & avg_degree 135 2735.26

avg_degree & avg_neighbour_degree_sequence 137 2648.15

The introduction of xxHash produces notable improvements across two configura-
tions. The baseline centrality solver achieves 137 solved instances with a PAR-2 of
2667.26 seconds, while the VSADS baseline solves 129 instances at 2896.68 seconds.
With xxHash applied to L2 caching, several patterns emerge that differ substantially
from the original hashing scheme.

The n_vars invariant with xxHash solves 135 instances with a PAR-2 of 2709.29 sec-
onds, representing a marginal 1.6% degradation over the baseline centrality solver.
The avg_degree invariant demonstrates more substantial benefits from xxHash, solv-
ing 138 instances with a PAR-2 of 2627.56 seconds. This represents a 1.5% improve-
ment over baseline and notably outperforms the same invariant under the original
hash function.

Most strikingly, the avg neighbour_degree_sequence combination solves 137 in-
stances with a PAR-2 of 2648.15 seconds under xxHash, improving slightly over the
baseline performance. This represents a dramatic improvement over the PAR-2
score of 2723.68 seconds observed with the original hash function, where only 134
instances were solved. The transformation from worst-performing to competitive
configuration confirms that the invariant’s poor prior performance stemmed primar-
ily from hash-induced collisions rather than fundamental algorithmic limitations.

Table 7.7 presents the collision analysis when xxHash is employed for L2 invariant
hashing, revealing how the improved hash function affects bucket chain lengths.

TABLE 7.7: collision counts per cache level (mean =+ std) (xxHash).

2 layer cache solver L3 collisions (mean + std) L2 collisions (mean =+ std)
n_vars 10503.22 + 38908.65 1.06 £9.12
avg_degree 10299.74 + 38399.03 11.89 + 46.77
n_edges & avg_degree 8500.38 £ 34420.48 127.12 £ 505.83
avg_degree & avg neighbour_degree_sequence 4602.75 £ 21304.74 4448.72 £ 15495.30
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The collision data with xxHash reveals the mechanism behind the performance
improvements. The n_vars and avg_degree invariants show minimal change in col-
lision behaviour, with L2 collisions remaining at approximately 1 and 12 respectively.
This stability confirms that these simple invariants already achieved reasonable hash
distribution under the original scheme. The L3 collision counts remain similar across
both hash functions, as expected, since L3 hashing is based on canonical labels and
remains unchanged.

The most dramatic collision reduction occurs with the avg_neighbour_degree_sequence
combination, where L2 collisions plummet from 21,514 to 4,449 on average. This
nearly five-fold reduction in collisions explains the corresponding performance
recovery observed in the PAR-2 scores.

Another possible factor limiting the gains from strong invariants is the computa-
tional overhead of adjacency list construction. The adjacency list must be constructed
from every component encountered during search in order to compute the L2 prop-
erty. Furthermore, each time an L2 cache entry requires conversion to L3, the edge
list must be constructed once again before performing the canonical computation.
Simpler invariants, such as n_vars, avoid this overhead and only construct the edge
list once for canonical computation.

This limitation stems from using HCO encoding during search, which requires more
expensive operations to retrieve the edge list. Addressing this optimization would
require a significant overhaul of the codebase. During component detection, edge
lists would need to be stored explicitly, and each component would need to maintain
this edge list representation, which is not as space-efficient as the HCO scheme.

An unexpected finding emerges when combining cache scores with centrality mea-
sures in a two-layer cache configuration. Table 7.8 demonstrates that this combina-
tion produces notably strong results across all invariants tested. The mechanism
behind this synergy remains poorly understood and merits further investigation.
One hypothesis is that cs-centrality alters the solver’s search path in ways that
reduce problematic numerical edge cases or hash collisions for the stronger graph
invariants. The modified branching behaviour may generate components that are
more amenable to L2 filtering, though the specific interaction requires deeper analy-
sis. Future work should explore whether the symmetry-aware ICS variant produces
similar or superior results when combined with two-layer caching.

The cs-centrality configurations reveal a surprising interaction between cache-aware
branching and multi-layer caching. The baseline with cs-centrality alone solves 136
instances with a PAR-2 of 3234.79 seconds, representing a substantial degradation
compared to the standard centrality baseline (137 instances, 2667.26 seconds). The
baselines are from previous Chapter 6, where cache-aware variants interfered with
the benefits of betweenness-guided branching.
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TABLE 7.8: PAR-2 scores of solver with cs-centrality and xxHash.

Solver Inst. PAR-2[s]
baseline with VSADS 129 2896.68
baseline with centrality 137 2667.26
baseline with cs-centrality 136 3234.79
n_vars 139 2561.75
avg_degree 141 2525.65
n_edges & avg_degree 140 2514.66

avg_degree & avg neighbour_degree_sequence 140 2516.93

When cs-centrality is paired with two-layer caching and xxHash, the performance
transforms dramatically. The n_vars invariant solves 139 instances with a PAR-2
of 2561.75 seconds, representing a 4.0% improvement over the standard centrality
baseline and a remarkable 21% improvement over the cs-centrality baseline.

The strongest performance comes from the n_edges & avg_degree combination,
which achieves 140 instances at 2514.66 seconds. This represents a 5.7% improve-
ment over the standard centrality baseline and a 22% improvement over the cs-
centrality baseline, making it the best overall PAR-2 score.

Figure 7.1 presents a scatter plot comparing the runtime of individual instances
between the ISYMGANAK and SYMGANAK solvers. The ISYMGANAK configuration uses a
two-layer L2/L3 cache with n_edges & avg_degree as the L2 invariant, combined
with cache scores and centrality-based branching. The SYMGANAK baseline uses only
an L3 cache with VSADS branching.

The scatter plot reveals a systematic performance advantage for ISYMGANAK. Many
points lie above the diagonal line, indicating that ISYMGANAK solves instances faster
than SYMGANAK. The majority of these points fall within the shaded region corre-
sponding to speed-ups between 1x and 10 x, demonstrating consistent but moderate
improvement across the benchmark suite.

The performance advantage is particularly pronounced for FPGA problems, where
ISYMGANAK achieves a median runtime of 4.57 seconds compared to SYMGANAK's me-
dian of 175 seconds. This represents a dramatic 38-fold speed-up on this problem
class, visible in the figure as a cluster of points far above the diagonal.

The ISYMGANAK solver times out on 8 instances compared to 14 timeouts for SYMGANAK.
Notably, there exist instances that SYMGANAK solves but ISYMGANAK does not, visible
as red points along the vertical timeout line.

To conclude, the overall performance comparison shows that ISYMGANAK achieves
a PAR-2 score of 2514.66 seconds compared to SYMGANAK’s 2896.68 seconds, repre-
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FIGURE 7.1: Per-instance runtime comparison between ISYMGANAK and the SYMGANAK
baseline. ISYMGANAK employs two-layer L2/L3 caching with xxHash and the n_edges
and avg_degree invariant at L2, combined with cache scores and centrality-based
branching, while SYMGANAK uses a single L3 cache with VSADS branching.

senting a 13% improvement. Additionally, ISYMGANAK solves 140 instances while
SYMGANAK solves 129 instances, demonstrating both improved efficiency and broader
coverage across the benchmark suite.

7.2.2 Three-Layer Cache

Simple scalar invariants such as n_vars have minimal computation overhead, but
provide insufficient discrimination, allowing many non-isomorphic components to
reach the L3 canonical labelling stage. Conversely, stronger graph-based invariants
such as avg neighbour_degree_sequence offer superior discrimination power, but
incur substantial overhead from adjacency list construction.
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A three-layer cache architecture offers a potential solution to this trade-off by imple-
menting a cascading filter strategy. As discussed in Section 4.3, the L1 cache layer
can employ an ultra-lightweight scalar invariant that requires no graph construction
whatsoever. This L1 filter quickly rejects obviously non-matching components with
negligible computational cost. Only components that pass the L1 filter proceed to
L2, where a stronger graph-based invariant provides more refined discrimination.
Components that survive both L1 and L2 filtering finally undergo canonical labelling
at L3. This graduated approach aims to minimize the number of components that
require edge list construction while maintaining effective discrimination throughout
the cache hierarchy.

The experimental design evaluates two three-layer configurations to test this hy-
pothesis. Both configurations use cs-centrality branching and xxHash for L2 hashing
to ensure consistency with the best-performing two-layer setup. The baseline for
comparison is the optimal two-layer configuration identified previously: n_edges
& avg_degree at L2 with cs-centrality and xxHash, which achieved 140 solved in-
stances with a PAR-2 of 2514.66 seconds.

Table 7.9 includes the three one-layer baselines (VSADS, centrality, and cs-centrality),
the three two-layer baselines that demonstrated strong performance with cs-centrality
branching and two three-layer cache configurations.

TABLE 7.9: PAR-2 scores and solved instances across one-layer, two-layer and
three-layer cache architectures using cs-centrality branching and xxHash. All config-
urations maintain identical solver settings except for invariant selection.

Cache L1 invariant L2 invariant Inst. PAR-2[s]
One-layer cache (L3)

L3 baseline with VSADS - - 129 2896.68
L3 baseline with centralities - - 137 2667.26
L3 baseline with cs-centralities — - 136 3234.79
Two-layer cache (L2/L3)

L2/L3 baseline - n_vars 139 2561.75
L2/L3 baseline - n_edges & avg_deg 140 2514.66
L2/L3 baseline - avg_deg & avg n_.degseq 140 2516.93
Three-layer cache (L1/L2/L3)

L1/L2/L3 n_vars n_edges & avg_deg 125 3010.24
L1/L2/L3 nvars &nb.cls&nlcls n_edges & avg.deg 115 3366.03
L1/1L2/L3 n_vars avg.deg & avg n.degseq 126 2988.90
L1/L2/L3 nvars &nb.cls&nlcls avg.deg&avgn.degseq 139 2542.25

The three-layer cache results in Table 7.9 reveal that additional cache layers generally
fail to improve upon the two-layer architecture. Most three-layer configurations
exhibit substantial performance degradation, with the worst variant solving only 115
instances at a PAR-2 of 3366.03 seconds. The majority of three-layer configurations
achieve PAR-2 scores between 2988.90 and 3010.24 seconds while solving between
115 and 126 instances, representing significant regressions compared to the two-layer
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baseline of 2514.66 seconds with 140 solved instances. One three-layer configuration
using n_vars & n_bin_clauses & n_long _clauses at L1 combined with avg_degree
& avg neighbour_degree_sequence at L2 achieves competitive performance with
139 solved instances and a PAR-2 of 2542.25 seconds, though this still falls short of
the best two-layer configuration.

The disappointing performance of the three-layer configuration lacks a clear expla-
nation. The most likely cause is that the L1 layer fails to provide sufficient filtering,
which results in unnecessary computational overhead when constructing adjacency
lists at L2 and possibly once again at L3. Future research should investigate whether
the performance degradation stems from inadequate L1 discrimination and whether
the overhead of adjacency list construction can be minimized.

To conclude, the optimal configuration identified through these experiments em-
ploys a two-layer L2 /L3 cache architecture with n_edges & avg_degree as the L2
invariant, cs-centrality branching and xxHash for L2 hashing. This configuration,
designated ISYMGANAK, achieves a PAR-2 score of 2514.66 seconds with 140 solved
instances, representing a 13% improvement over the SYMGANAK baseline. Figure 7.2
demonstrates with a cactus plot the performance advantage of ISYMGANAK across the
benchmark suite. The cactus plot shows ISYMGANAK solving 140 instances compared
to 129 for SYMGANAK and 99 for the GANAK baseline.
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FIGURE 7.2: Cactus plot comparing the performance of different solvers.
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Chapter 8

Graph Quantization

In Section 4.1, several benchmark instances were observed to produce very large
canonical labels. Even with an adjacency list representation, these graphs can con-
sume substantial memory once cached. Section 4.4 introduced a compact represen-
tation intended to reduce the per-component memory footprint, thereby increasing
the effective cache capacity and lowering eviction pressure.

This chapter addresses research question 3 by investigating whether compact bit-
stream encodings of canonical labels can reduce the space overhead of the symmet-
rical scheme resulting in better cache utilisation, and thus better performance.

The cache composition results in Chapter 7 already suggest that strong L2 invariants
reduce the number of components reaching L3. For example, Table 7.3 showed
that the strongest L2 invariant maintains an L3 cache with approximately 10,000
components on average, compared to over 45,000 for simpler invariants. At the
same time, Table 7.4 indicated that the L3 components observed with a strong L2
invariant are not exceptionally large on average, measuring roughly 310 + 1,200
variables. This suggests that the L2 cache already filters many large components,
potentially reducing the headroom for additional memory savings through graph
compression. However, the high standard deviation indicates substantial variability
across instances, with some problems generating much larger components that
could benefit from compact encoding.

The experimental design evaluates this hypothesis by comparing solver perfor-
mance across packed and unpacked canonical label representations at two different
cache sizes. The unpacked baseline employs the standard adjacency list representa-
tion used throughout previous experiments, while the packed variant applies the
Symmetrical Packing Scheme to compress canonical labels in the L3 cache. Both con-
tigurations use identical solver settings, including the L2 invariant (avg_degree &
avg_neighbour_degree_sequence), cs-centrality branching and xxHash for L2 hash-

ing.
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The results reveal that graph packing consistently degrades rather than improves
solver performance. At 2 GB cache capacity, the packed variant solves three fewer in-
stances and achieves a 3.1 % worse PAR-2 score compared to the unpacked baseline.
At 4 GB cache capacity, the degradation persists with two fewer solved instances
and 2.6 % worse PAR-2 score. These findings indicate that the overhead of encoding
packed representations outweighs any benefits from reduced memory consumption
under current cache configurations. The analysis suggests that multi-layer filtering
has already addressed the memory pressure that graph quantization was designed
to alleviate.

8.1 Methodology

The analysis consists of two complementary investigations. The first investigation
measures cache statistics at solver termination to assess the remaining optimization
potential for graph quantization. For each benchmark instance, three key metrics
are recorded: the total memory footprint occupied by cached components measured
in bytes, the number of components stored in the cache and the average size of
individual cache entries in bytes along with their standard deviation.

These per-instance statistics are subsequently aggregated and averaged across the
entire benchmark suite to yield representative values for each cache configuration.
Two configurations are examined: a baseline employing a single-layer L3 cache
paired with VSADS branching, and the best-performing multi-layer configuration
which consists of a two-layer architecture with n_edges & avg_degree as the L2 in-
variant, cache-aware centrality branching (cs-centrality) and xxHash for L2 hashing.
For the multi-layered cache, metrics are collected independently for each layer.

The objective is to determine whether L3 components in the multi-layered cache
still occupy substantial space compared to the single-layered cache. If significant
memory consumption persists at the L3 level despite the additional filtering layers,
this indicates viable opportunities for applying graph quantization techniques to
further reduce memory overhead.

The second investigation directly tests solver performance through PAR-2 scores
by evaluating the impact of graph quantization at different cache capacity limits.
The experiment compares packed and unpacked graph representations at two cache
capacities: 2 GB and 4 GB. To maintain consistent memory availability for non-cache
operations, instances with 2 GB cache allocation receive 4 GB total RAM on the
Genius cluster, while instances with 4 GB cache allocation receive 6 GB total RAM.
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The unpacked baseline stores canonical labels using the standard adjacency list
representation employed throughout the previous experiments. The packed variant
applies the Symmetrical Packing Scheme to compress canonical labels in the L3 cache.
Both variants use the same L2 invariant (avg_degree & avg neighbour_degree_sequence)
and cs-centrality branching to ensure that performance differences reflect only the
impact of graph compression.

8.2 Results

Table 8.1 presents cache occupancy statistics for the VSADS baseline configuration,
which employs a single-layer L3 cache only.

TABLE 8.1: Cache occupancy statistics for single-layer cache with VSADS branching.

Metric Mean Std
Total cache (KB) 127,464 219,892
L3 entries 101,018 211,683

L3 per entry (KB) 55.83  130.42

This baseline maintains an average of 101,018 components in the L3 cache, with
each component occupying approximately 55.83 KB on average. The total cache
occupancy averages 127 MB but exhibits substantial variability across instances.
Table 8.2 presents comparable statistics for the best multi-layer configuration, us-
ing n_edges and avg_degree as the L2 invariant with cs-centrality branching and
xxHash.

TABLE 8.2: Cache occupancy statistics for two-layer cache.

Metric Mean Std
Total cache (KB) 42,887 127,360

L2 Cache (HCO + invariant)
L2 entries 3,919 11,229
L2 per entry (KB) 7.49 16.25

L3 Cache (SS + canonical label)
L3 entries 43,673 111,934
L3 per entry (KB) 50.84  129.55

The multi-layer configuration achieves a substantial reduction in total cache occu-
pancy, averaging 42.9 MB compared to 127.5 MB for the baseline. This represents
a 66% reduction in memory consumption. The reduction stems primarily from
filtering: only 43,673 components reach L3 on average (compared to 101,018 in the
baseline), while 3,919 components remain in L2.

85



8. GRAPH QUANTIZATION

The per-component L2 footprint averages only 7.49 KB, approximately seven times
smaller than L3 components. This confirms that the HCO encoding with invariant
requires substantially less space than the symmetrical scheme with canonical labels.
Interestingly, the average L3 component size in the multi-layer configuration (50.84
KB) is only slightly smaller than in the baseline (55.83 KB), suggesting that the L2
filter does not strongly bias toward smaller components. Rather, the filter rejects
components based on invariant matching regardless of size.

Despite the substantial reduction in total cache occupancy, the presence of 43,673
L3 entries consuming approximately seven times more space per entry than L2
components suggests potential room for optimisation through graph quantization.
Table 8.3 compares PAR-2 performance across packed and unpacked graph represen-
tations at two cache capacities. All configurations use the L2 invariant avg_degree
and avg_neighbour_degree_sequence with cs-centrality branching.

TABLE 8.3: PAR-2 scores comparing unpacked (standard) and packed (SPS) graph
representations at 2 GB and 4 GB cache capacities. All configurations use L2 invari-
ant avg_degree & avg neighbour_degree_sequence with cs-centrality branching.

Configuration Inst. PAR-2 [s]
2 GB Cache Capacity

Unpacked graph (baseline) 139 2555.70
Packed graph (SPS) 136 2637.42
4 GB Cache Capacity

Unpacked graph (baseline) 139 2530.50
Packed graph (SPS) 137 2599.00

The results reveal a consistent pattern across both cache capacities: graph packing
degrades rather than improves solver performance. At 2 GB cache capacity, the
unpacked baseline solves 139 instances with a PAR-2 of 2555.70 seconds, while the
packed variant solves only 136 instances with a PAR-2 of 2637.42 seconds. This
represents a 3.1% degradation in PAR-2 and a loss of three solved instances. The
pattern persists at 4 GB cache capacity, where the unpacked configuration achieves
139 instances at 2530.50 seconds compared to 137 instances at 2599.00 seconds for
the packed variant, marking a 2.6% degradation.

The performance degradation occurs despite the theoretical memory savings offered

by the Symmetrical Packing Scheme. This finding suggests that the overhead of
encoding packed representations appears to outweigh the memory savings.
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Chapter 9

Conclusion

9.1 Conclusion

This thesis investigated whether the benefits of the symmetrical scheme for compo-
nent caching in model counting could be preserved while reducing its substantial
computational and memory overhead. The symmetrical scheme detects structurally
identical components through canonical graph labelling, enabling sophisticated
cache reuse that traditional schemes miss. However, the cost of computing canonical
labels for every cache access introduces severe performance penalties, with cache
access times exceeding traditional schemes by several orders of magnitude.

The multi-layer cache architecture proposed and evaluated in this work addresses
this fundamental tension by introducing intermediate layers that use lightweight
graph invariants to reject non-matching components before invoking expensive
canonical labelling. The experimental evaluation systematically addressed three
research questions examining invariant selection, cache architecture design and
memory optimization strategies across a diverse benchmark suite of 212 problem
instances.

The first research question investigated which graph invariants provide optimal
trade-offs between discriminative power and computational cost for higher-level
cache filtering. The analysis of approximately 450 million graph pairs revealed three
distinct performance tiers. Simple structural invariants such as vertex and edge
counts achieved modest precision rates around 75 percent. Neighbourhood-based
invariants combining basic properties with average neighbour degree sequences
achieved 96.7 percent precision at computation costs approximately one hundred
times lower than canonical labelling. Centrality-based invariants achieved precision
exceeding 99 percent but required computation times comparable to or exceeding
canonical labelling itself, rendering them impractical for cache lookup operations
performed millions of times during search.
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The second research question evaluated how multi-layer cache architectures af-
fect solver performance compared to single-layer caching. The optimal two-layer
configuration achieved a PAR-2 score of 2514.66 seconds while solving 140 instances,
representing a 13 % improvement and eleven additional solved instances compared
to the single-layer baseline of 2896.68 seconds and 129 instances. This configuration
employed basic structural properties combined with average degree as the L2 invari-
ant, paired with cache-aware centrality branching and an improved hash function
implementing the xxHash algorithm.

The evaluation of three-layer cache architectures produced mixed results, with
certain configurations matching but not exceeding two-layer performance. The
configuration using only simple invariants at L1 showed substantial degradation,
solving only 125 instances with a PAR-2 of 3010.24 seconds. However, a carefully
tuned three-layer design achieved 139 instances at 2542.25 seconds, approaching
the optimal two-layer performance.

The third research question examined whether compact bitstream encoding of
canonical labels could reduce space overhead and improve performance through
increased cache capacity utilization. The Symmetrical Packing Scheme applied
delta encoding and bit-level packing to canonical labels, but when evaluated in the
context of the complete multi-layer solver architecture, it consistently degraded
rather than improved performance across both 2 GB and 4 GB cache capacities. The
failure of graph quantization stems from the effectiveness of multi-layer filtering at
addressing memory pressure.

9.2 Future Work

9.2.1 Construction of Graph Structure

To detect disjoint components in the search tree, variables are traced from the super
component and disjoint sets are created. From these disjoint sets, components are
formed and encoded using the HCO encoding. This approach was chosen because
HCO representations require minimal space, an important consideration given that
the search tree can become quite large. However, this design introduces inefficien-
cies when components must be cached.

When a component requires caching in the symmetrical scheme, the HCO encoding
must be converted into a graph structure to construct the canonical label. Similarly,
components stored in the lightweight HCO encoding at the L2 level still require
edge list construction when computing graph invariants such as average neighbour
degree. If such a component is subsequently promoted to the L3 cache, the edge list
must be reconstructed again to compute the canonical label. This duplicated work
represents a significant inefficiency in the current implementation.
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The system would benefit from encoding components in the search stack using a
format that enables rapid edge list construction. Alternatively, if memory require-
ments can be accommodated, storing edge lists directly would eliminate the need
for recomputation.

9.2.2 Caching Before BCP

The symmetrical scheme is used in order to find structurally identical components
that have the same model count. An important point is that only components with
a given model count are cached. This principal can be extended to include also
unsatisfiable components but in a different cache.

In the second chapter, in section 2.7.3, the argument was made that components
from unsatisfiable subtrees are not included in the cache. Those components may
have model counts that are undercounted because they have been polluted by
learned clauses. But, due to pruning, components that caused the subtree to be-
come unsatisfiable are never recorded. It would be beneficial if before Boolean
constraint propagation is performed, the current component was not found in a
cache containing unsatisfiable components.

Example 19. Consider the following CNF formula F:

X1V XV x3)
x1VxaV X3>
X1 V X2 V —|X3>

X1 V X4 V X5)
—x1 Vo xg VvV X5)
—x1VxgV _\X5)

=(
(
(
(x1V —xp V —x3)
(
(
(
(

> > > > > > >

—x1 V Xy V oXs).

In practice, this formula produces only a single cached component, namely the full formula,
which is undesirable. Assume the solver first decides on the literal x1. This creates two
branches: {x1 = true} and {x; = false}. In the branch {x; = true}, the remaining
component is:

In the branch {x, = false}, the remaining component is:
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(x4 V x5)
N (_\X4 \% X5>
A (x4 V —|X5)
A (—\X4 V —|X5).

Once the first branch is proven UNSAT, the second branch must also be UNSAT by symmetry,
yet the solver fails to exploit this redundancy and repeats the same work due to cache
pollution management, see Algorithm 5.

9.2.3 Symmetric Clause Learning

Take the previous formula F. The solver first branches on the literal x;. In the
branch {x; = true} a conflict may yield the clause (x1 V x2 V x3). From this conflict,
the learned clause —x; can be derived, i.e. the solver concludes that x; must be false.

FIGURE 9.1: Graph representation Gr(F) of the CNF formula F.

Furthermore, it can visually be seen that x; and —x; belong to the same automor-
phism orbit. This means that one can replace the node x; with the node —x; and
the resulting graph remains isomorphic, i.e. it belongs to the same automorphism
group.

Since x; and —x; belong to the same automorphism orbit of the primal graph, the
symmetric counterpart of the learned clause would be —x; A x1, which is unsatisfi-
able. In that case computation of the other branch is avoided.

This symmetry-based technique has been studied extensively in SAT. Variants such
as Symmetry Propagation (Devriendt et al., 2012) and Symmetric Explanation Learning
(Devriendt et al., 2017) can be adapted to #SAT solvers since they preserve the model
count.
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9.24 Cache-Aware Neural Variable Branching

CSVSADS and ICSVSADS are variable branching heuristics that try to include the
cache state when considering branching. They try to bias the search away from
re-exploring components that have recently been solved, by penalizing variables
that frequently appear in cached components or in their symmetric counterparts.
The underlying assumption is that exploring new, syntactically distinct components
can help expose more opportunities for decomposition and avoid repeatedly recon-
structing the same subproblems.

An alternative approach is explicitly aiming to maximize the reuse of cached com-
ponents. The central idea is to treat the score of a candidate branching variable as
an estimate of the utility of the residual formula that would result if that variable
were chosen. Intuitively, a variable should be preferred if choosing it is likely to
produce a residual component that already exists (or closely matches) an entry in the
component cache, and thus yields a cache hit that saves expensive recomputation.

To make the proposal concrete, consider a tiny illustrative scenario. Suppose the
cache currently contains a component represented by the two clauses on the left,
while the component encountered at decision time consists of the clauses on the
right.

Cache Root of Current Search Tree
(-DVE) (AV-BVC)
A (D V —E) A (BV —C)

If the solver chooses the assignment { A = False}, the residual formula would be
isomorphic to the cached component. Branching on A therefore produces an almost
immediate cache hit, making it clearly the optimal choice. While this may not
matter much in a small example, the advantage becomes obvious if the components
were larger. Moreover, centrality-driven choices can spectacularly fail to exploit
available cache hits in such cases. CSVSADS can also fail if its cache-penalization
mechanism pushes the solver away from precisely those assignments that would
produce immediate, large cache hits. This doesn’t mean the previous heuristics are
wrong or inferior, rather they should be applied at different times.

The only solution capable of generalizing to specific contexts is a neural network.
Reinforcement learning is particularly well-suited for this task. The RL agent learns
through sequential decision-making which strategies to prioritize in different con-
texts, automatically discovering when to favour cache hits over centrality or when
to heed learned clauses, all by maximizing the reward signal.

All this to say, this isn’t a novel idea. There has been some effort in this direction.
Vaezipoor et al. introduced Neuro#, which uses graph neural networks (GNNs)
and reinforcement learning to learn variable-branching policies for model counting
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(Vaezipoor et al., 2021). In their experiments Neuro# achieved large reductions in
the number of branching steps and, on several hard problem families, produced
net wall-clock speed-ups relative to traditional heuristics (measured with GANAK)
despite the runtime overhead incurred by model queries.

The authors nevertheless acknowledge that inference latency is a practical bottleneck
in some settings and suggest that query overhead could be reduced by optimizations
such as GPU acceleration and tighter integration (e.g., loading the model into the
solver’s C++ code instead of making out-of-process Python calls).

However, Neuro# primarily focuses on the structural representation of the formula.
A significant extension beyond this work involves adding the cache state or the
learned clause database into the neural architecture. This could be achieved through
embeddings of cached components and computing a "distance to cache’” metric. By
incorporating these signals, the network can learn when to prioritize centrality and
when to pursue branches likely to lead toward existing cache entries.

score(NN, v) = NN(current component, centrality values, cache state, learned clauses database, v)

Another interesting avenue, inspired by AlphaZero (Silver et al., 2017), involves using
Monte Carlo Tree Search and a model to predict future cache states based on a series
of future variable assignments to guide the variable selection. Although the query
overhead would be too high, it is still interesting to see how small the search tree
and effective the cache can become.
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Appendix A

Measuring Methods

A.1 Measuring Average Access Time

Table 4.1 was shown illustrating the average cache access time across five benchmark
problem instances. The following explains how these measurements were taken.

Average access times were measured by attaching user-level probes to the two
functions of interest, ComponentCache: :ManageNewComponent and
ComponentManager : : ConvertComponent, using bpftrace. To ensure that each probe
captured the complete execution of the target function, both functions were compiled
with the noinline attribute, preventing inlining by the compiler and guaranteeing
the presence of stable symbols in the binary. Symbol locations were verified in
advance using nm -C.

For each function, a paired uprobe/uretprobe was installed. On function entry, a
high-resolution timestamp (nsecs) was recorded. On function return, the elapsed
execution time was computed as the difference between the return timestamp and
the corresponding entry timestamp. Per-call durations were accumulated in global
counters storing the total elapsed time and the number of calls and were additionally
recorded in histograms to capture the distribution of execution times.

Tracing was performed by launching the solver under bpftrace, ensuring that the
full execution of each benchmark instance was measured. Each benchmark problem
was executed independently, and for a given problem the average access time was
computed as the ratio of the total accumulated execution time to the total number
of observed calls. The values reported in Chapter 4, Section 4.1 correspond to these
per-problem averages.

All measurements were conducted under identical build conditions to minimize
external sources of variability. The default settings of SYMGANAK were used in all
cases, except for the encoding.
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A.2 Measuring Total Proportion of Cache Access Time

Table 4.2 was shown illustrating the fraction of each benchmark’s runtime that
was spent performing the cache-access operations. The values reported there were
obtained as follows.

The data presented was obtained using Valgrind’s callgrind profiling tool, which
records executed-instruction counts and attributes them to functions. These counts
can be used as a proxy for the relative time spent in different parts of the program.

The raw profiling data was collected in callgrind output files and subsequently
analysed using KCachegrind for visualization.

A.3 Measuring memory usage per component

Table 4.3 reports the average and standard deviaton of memory usage per cached
component across some benchmark instances. These metrics were obtained by
measuring the size of every cached component when the solver is finished. The
statistics (count, mean and standard deviation) are computed online using Welford’s
algorithm (Welford, 1962) to avoid numeric instability.

Figure 4.2 shows a histogram of the memory usage of cached components across
several benchmark instances. This data was collected at the end of each run by
measuring the memory usage of every cached component and assigning the mea-
surements to a 30-bin histogram. To obtain an aggregated histogram across multiple
benchmark instances, the per-instance histograms are combined by summing the
bin counts.

Analogously, Table 4.4 and Figure 4.6 present results for both L2 and L3 caches,
using a single encoding scheme per cache. L3 uses the SS encoding, while L2 uses
the HCO encoding together with an additional graph property (average degree and
average neighbour degree).
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Encoding and Hashing

B.1 Graph6 Encoding

graph6 (McKay, 2022) is a compact ASCII-based format for representing simple
undirected graphs. Each graph is written using only printable ASCII characters
in the numeric range 63-126. The graph encoding is a concatenation of two parts:
N(n) R(x) where 7 is the number of vertices and x is the bitstring formed from the
upper-triangle of the adjacency matrix (McKay, 2022). In what follows, the graph6
encoding will be explained by applying it to formula F.

F = (x1 \/Xz\/X3) N (X3\/X4\/X5) N (ﬁxl V —xo V—x3VoxgV _\X5)

Example 20. To derive the graph6 encoding for the given formula, start by identifying the
nodes and edges in the graph representation of the formula. Given the graph representation,
which is the same as in Figure 4.7, the adjacency matrix with n = 13 vertices, the upper-
triangle edge positions are

{0,11,20,23,32,39,42,49,54,55,57,62,66,68,71,73},

which corresponds with Figure 4.8. The number of upper-triangle bits is B = (123) =78.
The first step is to build the 78-bit upper-triangle vector x, which sets bit i to 1 if and only if
position i is an edge. The resulting 78-bit string is

100000000001 00000000100 1000000001 000000100 10000001 0000110 100001 00010 1001 010 00 0O

The following step is to split this long bitstring into 6-bit groups and form R(x). Also, if the
total bitstring is not divisible by 6, then the bitstring is padded to be a multiple of 6. In this
case, the bitstring is 78 bits long and divisible by 6. The result will be 13 groups of 6 bits as
follows:
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group index 6-bit group value

1 100000 32
2 000001 1
3 000000 O
4 001001 9
5 000000 O
6 001000 8
7 000100 4
8 100000 32
9 010000 16
10 110100 52
11 001000 8
12 101001 41
13 010000 16

Each 6-bit value v is encoded as a single byte by adding 63 to it. Since a 6-bit number
can represent values from 0 to 63, the largest possible encoded value is 63 4 63 = 126.
Because a byte can represent values up to 255, this encoding never overflows. Consequently,
every resulting byte lies in the range 63-126, which corresponds exactly to printable ASCII
characters. This ensures that the entire encoding consists of readable symbols.

32463 = 95(')
1463 = 64('@)
0+63 = 63('7)

(

(

(
9+ 63 (
0+63 = 63('?)

(
(
(

|
N
N

8+63 = 71('G)
4463
32+ 63
16 + 63
52463 = 115('s)
8+63 = 71('G)
41463 = ('n)
16+63 = 79('0")

1
N O O
O U1
—~

SREYo)
~— ~—

I

—_
o
=

Hence
R(x) = _@?H?GC_0sGhO.

The final step is to encode the number of vertices n. For values 0 < n < 62, the graph6
format represents n using a single byte with numeric value 63 + n. In this case, n = 13,
so the encoded value is 63 + 13 = 76, which corresponds to the ASCII character L. Thus,
N(13) = L. The complete graph6 representation is obtained by concatenating the encoded
vertex count N (n) with the remaining data R(x).

L_@7H?GC_0sGhO.
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B.2 Hash Functions for Graph Invariants

The L2 cache encoding requires efficient computation of hash values from graph
invariants. The choice of hash function impacts both cache lookup speed and the
potential for collisions, which can make chains in the cache longer which increases
lookup time, see Figure 4.4 or Figure 4.5. Therefore, the quality of the hash distri-
bution can affect performance. This section discusses the hash functions used for
computing hash keys from graph properties.

B.2.1 Linear Hash

When graph invariants consist of scalar values such as variable counts and clause
counts, a simple linear combination hash function has been used:

n
h= ZCZ“Z)Z‘
i=1

where v; are the invariant values and c; are constant coefficients. The implementation
typically uses small integers such as 1 or 2 for these coefficients. For example, a
property combining the number of variables and clauses computes its hash as:

h=2- Noars + Nelquses

B.2.2 Polynomial Rolling Hash

Graph invariants containing arbitrary numbers of scalar values, such as degree
sequences, require a different approach. A polynomial rolling hash operates on
sequences of values by iteratively applying the recurrence relation:

hit1 =hi-c+v;

where c is a constant multiplier, v; is the i-th value in the sequence, and hy is
initialized with a seed value. For the graph invariants consisting of a scalar value
and a vector such as the average degree and degree sequence combination, the hash
was computed as:

function PolynomialHash (invariant_constant, invariant_sequence):
hashkey < invariant_constant;
for each value v in invariant_sequence do
| hashkey < (hashkey x 3) + v;
end
return hashkey;

SN Ul W W N

Algorithm 12: Polynomial rolling hash for graph invariants

The multiplier constant of 3 was chosen for its simplicity and computational effi-
ciency. Polynomial hashing is straightforward to implement and requires minimal
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computational overhead, each iteration involves only one multiplication and one
addition operation.

However, polynomial hashing with small constant multipliers can suffer from
several limitations. The hash values exhibit poor avalanche properties, meaning that
small changes in input values do not sufficiently disperse the resulting hash values
across the hash space. This can increase the collision rate in hash tables, which can
lead to longer bucket chains and degraded lookup performance.

B.2.3 xxHash

xxHash (Collet, 2018), which stands for extremely fast hash, uses a non-cryptographic
hash function designed by Yann Collet !. xxHash prioritizes speed and distribution
quality over cryptographic security, making it well-suited for hash table applications.

xxHash subdivides input data into multiple independent streams that are processed
in parallel (Collet, 2018). This approach minimizes data dependencies and allows
the algorithm to approach the theoretical RAM bandwidth limit (Collet, 2018). For
hashing graph invariants, Algorithm 13 depicts the procedure for graph invariants
that are a combination of a sequence and a scalar value.

1 function GetHashkey(invariant_constant, invariant_sequence):

2 n < sizeof(invariant_sequence);

3 v_hash < XXH3_64bits (invariant_sequence, n X sizeof(double));

4 total _hash <— XXH3_64bits_withSeed (invariant_constant, sizeof(double),
v_hash);

5 return (total_hash @ (total_hash > 32));

Algorithm 13: XXH3 hashing for graph invariants (sequence + scalar).

B.2.4 Canonical Graph Hashing for L3

While the L2 and L1 cache use xxHash or the polynomial hash to process hash graph
invariants, the L3 cache operates on canonical graph representations and requires a
different hashing strategy. The L3 hash function must compute hash values directly
from the graph structure in its canonical form, ensuring that isomorphic graphs
produce identical hash values after canonicalization (McKay, 2024).

The L3 hash is computed using the hashgraph_sg function from the NAUTY library,
which operates on sparse graph representations. This function is specifically de-
signed to hash graph structures producing consistent results.

Thttps:/ /github.com /Cyan4973 /xxHash
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The graph hashing algorithm processes the sparse graph representation by examin-
ing the degree sequence and edge lists of all vertices. The computation maintains an
accumulator that is updated based on the structural properties of each vertex:

1 function HashGraphSG (sg, key):
2 accum <— sg.num_vertices;
3 for i < 0 to sg.num_vertices — 1 do
4 if sg.degree[i] = 0 then
5 ‘ accum <— accum + FUZZ1(i);
6 else
7 accum < (accum > 7) | ((accum < 24) & Ox7FFFFFFF);
8 val <— ListHash (sg.edges[i], sg.degree[i], key);
9 val < (val + i) & Ox7FFFFFFF;
10 accum < accum + FUZZ2(val);
11 end
12 end
13 return accum & 0x7FFFFFFF;

Algorithm 14: Canonical graph hashing for L3 cache

The algorithm distinguishes between isolated vertices (degree zero) and connected
vertices. For isolated vertices, the accumulator is updated by applying a fuzz
function to the vertex index. For connected vertices, the algorithm performs a
circular bit rotation on the accumulator before processing the vertex’s edge list.
The rotation operation (accum > 7) | ((accum < 24) & Ox7FFFFFFF) shifts the
accumulator right by 7 bits while wrapping the discarded bits to the high-order
positions. The edge list of each vertex is hashed using the 1isthash subroutine,
which computes a hash value from a set of integers:

function ListHash (edges, count, key):

accum <— count;

lkey < key & 0x7FFFFFFF;

fori < 0tocount — 1do
val < edges[i] & Ox7FFFFFFF;
val < (val + lkey) & Ox7FFFFFFF;
accum < accum + FUZZ1(val);

end

return accum & 0x7FFFFFFF;

© ® g N R W N =

Algorithm 15: Hash function for edge lists

The 1isthash function initializes its accumulator with the edge count, then iterates
through the edge array, which contains the neighbour vertices of a particular vertex.
Each neighbour vertex is masked to 31 bits, combined with 1key, and passed through
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the FUZZ1 function before being added to the accumulator. Two sets of constants are
defined:

fuzzl = {1984625421, 971524688, 1175081625, 377165387 }
fuzz2 = {2001381726,1615243355, 191176436, 1212176501 }

The FUZZ1 and FUZZ2 operations are defined as:

FUZZ1(x) = x & fuzzl[x mod 4]
FUZZ2(x) = x & fuzz2[x mod 4]

These operations XOR the input value with a constant selected based on the two
least significant bits of the input.
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Sampling Bias

C.1 Sampling Bias in Collecting Components

This analysis is restricted to the first six minutes of the solver’s execution to en-
sure computational feasibility. The first test aggregates information per instance
by computing the median of the n_ nodes! invariant values in the full and in the
sampled dataset and then applies a paired Wilcoxon signed-rank test to those per-
instance medians. This nonparametric paired test checks whether the distribution
of mediang,;; — mediangg, ;. is symmetric about zero.
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FIGURE C.1: Distribution of median differences (Q; = 1, Q, = 14.5, Q3 = 48)

The second test is at the instance level: for every instance the code runs a two-sample
Kolmogorov-Smirnov (KS) test comparing the empirical n_nodes distributions from

Inumber of nodes of the graph representation of a component
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full vs sampled data. Per-instance p-values are corrected for multiple compar-
isons using Benjamini—-Hochberg (FDR) procedure and the number of rejections is
illustrated in Figure C.2.

Reject (FDR) |

Significance (FDR)

Not significant

= 0.5

= 0.25

T T T T T T T T T
0 10 20 30 40 50 60 70 80

Instances (sorted by KS D)

FIGURE C.2: Significance (FDR) and KS D statistics across instances, 85 out of 90
instances reject null hypothesis after FDR
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Appendix D

Branching

D.1 Centrality and Balanced Search Trees

This appendix compares variable-branching choices and explains how centrality
measures can yield a more balanced search tree. There is also an interesting coinci-
dence with branching on a central node when the graph representation is symmetri-
cal around the central node.

The search performed by a model-counting solver can be represented as a binary
search tree whose nodes correspond to variable assignments and represent sub-
problems, as illustrated in Figure D.1. The shape of such search trees are heavily
influenced by the branching heuristic. A poor heuristic may produce a highly
skewed tree, where one branch quickly terminates while the other remains large. A
more balanced branching choice yields similarly sized subproblems on both sides of
the split which may result in less decisions and better solver performance, as will be
illustrated in the example below.

Example 21. Consider the formula

F=(-AV-BVC(C)
A (AV~=0)
A (BV-DVE)
A (DV —E).

Initially this formula is a single connected component, as illustrated by the graph representa-
tion in Figure D.2. Five variables are available for branching: A, B,C, D, E. Structurally,
the meaningful branching choices reduce to either branching on B or branching on any
variable from {A,C, D, E}.
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D. BRANCHING

The figures below visualize the different search trees produced by these options. Branching
on B yields well-balanced subcomponents. Both the true and false branches split into compo-
nents of three variables. Branching on other variables often produces more unbalanced trees

and fewer repeated large substructures.
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FIGURE D.1: Different search trees. Green indicates that the component is present in the
cache, while red indicates absence. Each box represents a component. depths shown are
limited to components containing at least two variables for readability. Dotted lines inside
component boxes indicate disjoint components. Labels such as A, B denote branching first
on variable A at the root, followed by branching on B at the next decision level.
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D.1. Centrality and Balanced Search Trees

Figure D.2 shows the graph representation of the CNF instance and highlights how B is
centrally located between two communities. In this instance, branching on B splits the
component into two equal sized components, which leads directly to reuse in the cache and
to shorter decision trees as illustrated in Table D.1.

Branch on Total steps Total decisions Cache hits

A,B 16 3 2
A, C 16 3 2
A,D 20 4 1
B 11 2 2

TABLE D.1: Cost metrics for the example search trees. ‘A, B denotes branching first
on variable A at the root, followed by branching on B at the next decision level.

As a side effect, if the component is symmetrical around the central node such as in this
case, splitting on the central node may not only produce equal sized components but may
also correspond to finding structurally identical components. In this case, as can be seen
in Figure D.1, branching on variable B, resulted in a cache hit direclty under this decision

level.
& @

FIGURE D.2: Graph representation of the CNF instance. The B node is centrally
located between two communities.
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Appendix E

Use of Generative Al
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Code of conduct and transparency statement on the use of GenAl for KU Leuven-students (academic year

2025-2026)

Generative Al (GenAl) assistance tools can be used to generate various types of content, including text, images, code, video, music, or combinations thereof.
Common examples of such tools include ChatGPT, Google Gemini, Microsoft Copilot, Midjourney, Claude.ai, Perplexity.ai, and DALL-E, among others.

This code of conduct is a tool that helps students to be transparent about the use of GenAI and fits within the university’s principles on academic integrity.

Important guidelines and remarks

Sensitive or personal data: Some GenAl tools protect your input and sensitive or personal data better than others. There is often no
transparency on what the owners of the Al applications do with the data entered. Therefore, do not enter sensitive or personal data in free
GenAl tools. More info about what sensitive and personal data are, is described in the three confidentiality levels of the KU Leuven data
classification model (non-confidential, confidential, strictly confidential). For confidential data you should preferably use M365 Copilot Chat with
your KU Leuven account. If you use another GenAl tool, you must be absolutely certain it does not store or reuse the data you enter. Try to
avoid entering these data. Do so only if strictly necessary, and only to the extent required. For personal data, work with anonymous or
pseudonymized data. Additionally, in case of strictly confidential data this should first be discussed with the teaching staff of the course or your
thesis supervisor.

Copyrighted materials: For lawfully obtained copyrighted material you should preferably use M365 Copilot Chat with your KU Leuven
account. If you use another GenAl tool, you must be absolutely certain it does not store or reuse the data you enter.

GenAlI assistance may not be used for data or topics covered by a Non-Disclosure Agreement (NDA). Even in the absence of an NDA, certain
information may still need to be treated as confidential—for example, due to regulatory requirements or the risk of significant harm to the
university if disclosed. In case of doubt, check with your teaching staff or supervisor.

If your master’s thesis is under embargo, you should first discuss with your supervisor whether the use of GenAl is permitted.

Before using a GenAl tool, always consider whether its use is responsible, including from a sustainability perspective (e.g. when using GenAlI as
a search engine, language assistant,...).

Take a scientific and critical attitude when interacting with GenAlI assistance and interpreting its output, that may not always be correct.

GenAl code of conduct and transparency statement for students 2025-2026



- As astudent you are responsible for complying with Article 84 of the Regulations on Education and Examinations: your report or thesis should

reflect your own knowledge, understanding and skills. Be aware that plagiarism rules also apply to (work that is the result of) the use of GenAI
assistance tools.

Exam Regulations Article 84: “Every conduct individual students display with which they (partially) inhibit or attempt to inhibit o
correct judgement of their own knowledge, understanding and/or skills or those of other students, is considered an irreqularity
which may result in a suitable penalty. A special type of irreqularity is plagiarism, i.e. copying the work (ideas, texts, structures,
designs, images, plans, codes , ...) of others or prior personal work in an exact or slightly modified way without adequately
acknowledging the sources. Every possession of prohibited resources during an examination (see article 65) is considered an
irregularity.”

- In order to maintain academic integrity and avoid plagiarism, more information about being transparent on the use of GenAlI assistance and

about correctly citing and referencing GenAlI can be found on this website for students_ (Dutch/English).

- Additional reading: KU Leuven guidelines on responsible use of Generative Al tools, and other information (Dutch/English)

A few final words

If you are uncertain whether or not you should declare your use of GenAlI tools, we suggest that you discuss this with your instructor or
supervisor. Itis always safer to declare GenAl use, even when it is not strictly required. However, declaring GenAl use does not entail that its
use is allowed; the right column in the table below provides more detailed instructions in this regard (code of conduct).

Moreover, advanced Al tools are evolving rapidly, and their capabilities have expanded significantly in a short period of time. As a result, we do not
yet have all the answers about their responsible use. Finally, it is important to follow-up on the most recent evolutions in Al technologies, to have an

open mind but also to be a bit cautious, to communicate with instructors, teaching assistants, supervisors and peers, to be as transparent as we can,
and to learn together as we move along.
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Student name: El Kaddouri IDTaNIM...c.cieceeeeceeeeceeeceeseeeseeesesee et seeeseneeseseesesaesenesesnes Student NUMbeEr: RO855183........cccccceeeeeeneecereneerereennsceressssessasennne

Please indicate with "X" whether it relates to a course assignment or to the Bachelor’s or Master’s thesis:

O This form is related to a course assignment.
CoUurse NAME: ..........cociiiiiiiiiic Course number: ............ccocoveviinininininene.
This form is related to my O Bachelor’s or X{Master’s thesis.

Title Bachelor’s or Master’s thesis: Hierarchical Symmetric Component Caching In Model Counting

Supervisor: Prof. dr. LUC D@ RaedL.......cceiiriririeiereeeeeeeeeee et

Daily supervisor: Dr. ir. Vincent Derkinderen.........ccoceeevveereeniieeneenneeniiesseessvesseessnens

Please indicate with "X":

O I did not use any GenAlI assistance tool.

&I did use GenAlI Assistance. In this case specify which ones (e.g. ChatGPT, M365 Copilot,...):

GenAl code of conduct and transparency statement for students 2025-2026



GenAl assistance used as/for:

Name of the GenAlI tool(s) used.

If helpful, also describe in which way you were
using GenAl related to what is specified as code of
conduct.

Code of conduct:

For each of the categories below, always take into
account the important guidelines and remarks
mentioned above (e.g. copyrighted data, sensitive or
personal data,...).

As a language assistant for
reviewing or improving texts
I wrote myself

ChatGPT, Claude, Mistral

This use is similar to using spelling and grammar check
tools. In general, you do not have to refer to such kind of
GenAl use in the text.

However, be careful:

- When using GenAl tools on texts you did not write
yourself to improve the text, you have to refer to
the original source or author, otherwise you are
committing plagiarism and thus an irregularity.

As a paraphrasing tool

ChatGPT, Claude, Mistral

This use is allowed except when it is prohibited by the
teacher or the program of study. You may paraphrase
your own text or texts by an author other than yourself
and take inspiration from what a GenAlI tool or another
tool suggests (unless it is not allowed). In general, you do
not have to refer to such kind of GenAl use or other
paraphrasing tools in the text.

However, be careful:

- Ifit entails text by an author other than yourself,
you are not allowed to include that
paraphrased text without reference to the
original source or author. Without such
reference, you would be committing plagiarism
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and thus an irregularity.

For translation aid to improve
texts I wrote myself or to
better understand text from
others

ChatGPT, Claude, Mistral

This use is allowed except when it is prohibited by the
teacher or the program of study. It is similar to using
translation tools (Google translate, DeepL, ...). In general,
you do not have to refer to such kind of GenAlI use in the
text.

However, be careful:

- You are not allowed to include that translated
text without reference to the original source or
author. Without such reference, you would be
committing plagiarism and thus an irregularity.

- Always check the translated text for correctness
and meaning.

As a search engine to get
information on a topic or to
search for existing research
on the topic

ChatGPT

This use is similar to e.g. a Google search or checking
Wikipedia. If you write your own text based on this
information, you do not have to refer to the use of GenAl
in the text. You only have to refer to the existing
research and references you have checked and used
(without such references you would be committing
plagiarism and thus committing an irregularity).
However, be careful:

- Be aware that the output of the GenAl tool cannot
be guaranteed as a 100% reliable source of
information. The output may not be entirely
correct and/or be limited due to the databases it
uses. Moreover, knowledge evolves and may
change over time; therefore, the database of the
GenAl tool may not be up to date. Therefore,
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verify the information and do not just copy-
paste it as you should understand and critically
process everything you are writing.

For literature search

ChatGPT

This use is comparable to e.g. a Google Scholar search.
You do not have to refer to such kind of GenAl use; you
only have to refer to the literature references you
have checked and used (without such references you
would be committing plagiarism and thus committing an
irregularity)..

However, be careful:

- Be aware that the search output is restricted to the
database the GenAlI tool is built on. After this initial
search, look for scientific sources and conduct
your own analysis of the source documents.
Interpret, analyse and process the information
you obtained; verify it and do not just copy-
paste it as you should understand and critically
process everything you are writing.

- Be aware that some GenAl tools may output no or
wrong references. As a student you are
responsible for further checking and verifying the
absence or correctness of references; do not just
copy-paste it.

For generating programming
code

ChatGPT

Use of GenAl for coding is allowed except when it is
prohibited by the teacher or the program of study. If used
for coding, correctly mention the use of GenAl assistance
in accordance with the instructions on the page on being
transparant about the use of GenAl.

For generating new (research)
ideas

This use of GenAl is allowed except when it is prohibited
by the teacher or the program of study. Correctly

GenAl code of conduct and transparency statement for students 2025-2026




mention the use of GenAl assistance in accordance with
the instructions on the page on being transparant about
the use of GenAl
Be careful:
- Further verify in this case whether the idea is novel
or not. It is likely that it is related to existing work.
If so, that existing work should be correctly
referenced in the text (without such reference
you would be committing plagiarism and thus
committing an irregularity).

For generating synthetic data

Use of GenAl for generating synthetic data is allowed,
provided that it is methodologically and ethically
justifiable, except when it is prohibited by the teacher or
the program of study. Always correctly mention the use
of GenAl assistance in accordance with the instructions
on the page on being transparant about the use of GenAl.
Be careful:

- Always carefully evaluate the generated synthetic
data for quality and possible bias since the output
is highly dependent on the quality of the data on
which the models are trained.

For generating blocks of text
(other than the allowed use
without referencing
mentioned above)

According to Article 84 of the Regulations on Education
and Examinations your text should allow to correctly and
properly assess your own knowledge, understanding and
skills. Therefore, inserting blocks of text without
quotes and a reference to GenAl assistance in your
work is not allowed.
Be careful:

- Ifitis really needed to insert a block of text from a
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GenAl tool, for instance because of the nature of
your assignment, mention it as a citation by using
quotes and correctly mention the use of GenAl
assistance in accordance with the instructions
page on being transparant about the use of GenAl

- However, in general, such GenAl use should be
kept to an absolute minimum; you should always
check the original sources.

For generating visuals, video
or audio

Use of GenAl for generating visuals, audio or video is
allowed except when it is prohibited by the teacher or
the program of study.

Be careful:

- If used, refer to GenAl for visuals according to the
usual referencing style, following the instructions
on the page on referencing GenAl

- If you work with existing visuals, audio or video,
that existing work should be correctly
referenced in the text (without such reference
you would be committing plagiarism and thus an
irregularity).

- Explain the usage in the methods section (if there
is one) and optionally attach (or link to) the
prompts with the full output (or history).

Other use (specify here; this
may also include a
combination of types of use
mentioned above):

To make sure other use of GenAl is allowed within the
course or thesis, and if so, the conditions that may apply,
contact the teaching staff of the course or the supervisor
of the thesis beforehand and explain the intended GenAl
use. Also inform the programme director.

Motivate how you would comply with Article 84 of the
exam regulations. Explain the use and the added value of
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the Al tool you consider to use and how it is in
accordance with the assignment or thesis and the KU
Leuven guidelines on responsible use of Generative Al
tools.

Depending on the kind of GenAl use, it may be needed to
properly reference it in the text, in accordance with the
instructions page on being transparant about the use of
GenAl
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